Skip to main content
Log in

Groundwater of the Pleistocene aquifer system in the North Caspian and Near-Caspian regions: Communication 2. Significance of sedimentary water integrity for the development of sedimentary basins and paleogeological reconstructions

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

An additional very important and, possibly, unique feature of the Caspian sedimentary basin—the retention of sedimentary water in the Pleistocene aquifer system of the North Caspian and Near-Caspian regions—is discussed. It is shown that increase of the groundwater mineralization was caused by its metamorphization during diagenesis. Under conditions of the integrity of sedimentary water during geological history, hydromicaceous clays serve as the main source providing a significant increase of mineralization in the interstitial water of marine sediments and groundwater. The comprehensive examination of sedimentary processes in the Neopleistocene Caspian Basin and groundwater formation in the Pleistocene aquifer system of the northern Near-Caspian region made it possible to determine (and, frequently, to quantify) a system of specific natural factors and conditions (at the quantitative level in many cases). They can be used for the assessment of retention or displacement of sedimentary water from the sedimentary basin with a high degree of confidence. This is of great importance for the study of present-day sedimentary basins and geological reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkowitz, B., Dror, I., and Yaron, B., Contaminant Geochemistry. Interaction and Transport in the Subsurface Environment, Berlin: Heidelberg, 2008.

    Book  Google Scholar 

  • Brezgunov, V.S. and Ferronskii, V.I., Macro- and Microelements in the Interstitial Water of Deep-Water Areas of the Southern and Middle Caspian Sea, Water. Resour., 2010, vol. 37, no. 6, pp. 825–834.

    Article  Google Scholar 

  • Brusilovskii, S.A. and Lapteva, L.A., Chlorium content in silt solutions: Geochemical indicator of the submarine discharge of groundwaters in the Caspian Sea, in Kompleksnye issledovaniya Kaspiiskogo morya (Complex Studies of the Caspian Sea), Moscow: MGU, 1976, issue 5, pp. 168–188.

    Google Scholar 

  • Brusilovskii, S.A. and Lapteva, L.A., Osnovnye zakonomernosti raspredeleniya khlorid-ionov v ilovykh vodakh Kaspiiskogo morya. Khimiko-okeanologicheskie issledovaniya (Main Regularities in the Distribution of Chloride Ions in Mud Waters of the Caspian Sea: Chemical Oceanographic Studies), Moscow: Nauka, 1977, pp. 20–35.

    Google Scholar 

  • Butuzova, G.Yu., Gidrotermal’noe rudoobrazovanie v riftovoi zone Krasnogo morya (Hydrothermal Ore Formation in the Rift Zone of the Red Sea), Moscow: GEOS, 1998.

    Google Scholar 

  • Chekhovskikh, M.M. and Pit’eva, K.E., Study of regularities in variation of the chemical composition of solutions squeezed out from monomineral clays at different pressures, in Svyazannaya voda v dispersnykh sistemakh (Bound Water in Dispersed Systems), Moscow: MGU, 1972, issue 2, pp. 180–194.

    Google Scholar 

  • Dagan, G., Flow and Transport in Porous Formation, New York: Springer, 1989.

    Book  Google Scholar 

  • Demin, V.V., Role of humic acids in the irreversible sorption and biochemistry of heavy metals in soils, Izv. Timiryaz. Sels.-Khoz. Akad., 1994, no. 2, pp. 19–86.

    Google Scholar 

  • Dyunin, V.I., Gidrogeodinamika glubokikh gorizontov neftegazonosnykh basseinov (Hydrodynamics of Deep Horizons of Petroliferous Basins), Moscow: Nauchn. Mir, 2000.

    Google Scholar 

  • Dzhamalov, R.G., Zektser, I.S., and Meskheteli, A.V., Podzemnyi stok v morya i mirovoi okean (Underground Discharge into the Sea and World Ocean), Moscow: Nauka, 1977.

    Google Scholar 

  • Engel’gard, V., Porovoe prostranstvo osadochnykh porod (Pore Space in Sedimentary Rocks), Moscow: Nedra, 1964.

    Google Scholar 

  • Fedorov, F.M. and Lefevre, G., Sorption mechanisms and models. Their influence on transport calculation, in Uranium in the Environment. Mining Impact and Consequences, Merkel, B.J. and Hasche-Berger, A, Eds., 2006.

    Google Scholar 

  • Fedorov, P.V., Pleistotsen Ponto-Kaspiya (Pleistocene of the Ponto-Caspian Region), Moscow: Nauka, 1978.

    Google Scholar 

  • Gilham, R.W., Sudicky, E.A., Cherry, J.A., and Frind, E.O., An advection diffusion concept for solute transport in heterogeneous unconsolidated geologic deposits, Water Resour. Res., 1984, vol. 20, pp. 369–378.

    Article  Google Scholar 

  • Golovanova, O.V., Formation of Pleistocene groundwaters in the modern Caspian region in connection with exploitation of the Astrakhan gas complex, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Moscow: Moscow State Univ., 2004.

    Google Scholar 

  • Golovanova, O.V., Specifics of the differentiation of sedimentary material during the accumulation of Pleistocene–Holocene sediments in the northern Caspian and near-Caspian regions, in Fundamental’nye problemy kvartera: itogi izucheniya i osnovnye napravleniya dal’neishikh issledovanii (Fundamental Problems of the Quaternary: Results of the Study and Main Lines of Further Research), Moscow: GEOS, 2007, pp. 79–82.

    Google Scholar 

  • Golovanova O.V. Groundwaters of the Pleistocene Aquifer System in the North Caspian and Near-Caspian Regions: Communication 1. Character of Water Exchange and Factors of Sedimentary Water Integrity, Lithol. Miner. Resour., 2015, no. 3, pp. 231–247.

    Article  Google Scholar 

  • Grichuk, D.V., Experimental study of the metamorphization of mud waters in marine sediments during sulfate reduction, in Zakonomernosti formirovaniya khimicheskogo sostava prirodnykh vod (Formation Regularities of the Chemical Composition of Natural Waters), Moscow: MGU, 1981, pp. 83–98.

    Google Scholar 

  • Gurskii, Yu.N., Geokhimiya litogidrosfery vnutrennikh morei. Soobshchenie 1. Metody izucheniya i protsessy formirovaniya khimicheskogo sostava ilovykh vod v otlozheniyakh Chernogo, Azovskogo, Kaspiiskogo, Belogo, Baltiiskogo morei (Geochemistry of the Lithohydrosphere of Internal Seas: Communication 1. Methods of Study and Formation Processes of the Chemical Composition of Mud Waters in Sediments of the Black, Azov, Caspian, White, and Baltic Seas), Moscow: GEOS, 2003.

    Google Scholar 

  • Gurskii, Yu.N., Geokhimiya litogidrosfery vnutrennikh morei. Soobshchenie 2. Ilovye vody Krasnogo i Sredizemnogo morei. Zony estuariev. Zakonomernosti formirovaniya i klassifikatsiya vod litogidrosfery (Geochemistry of the Lithohydrosphere of Internal Seas: Communication 2. Mud Waters in the Red and Mediterranean Seas. Estuarine Zones. Formation Regularities and Classification of Waters in the Lithohydrosphere), Moscow: GEOS, 2007.

    Google Scholar 

  • Horne, R.A., Marine Chemistry, New York: Wiley-Intersciences, 1969. Translated under the title Morskaya khimiya, Moscow: Mir, 1972.

    Google Scholar 

  • Ivanov, V.A., Prusov, A.V., Ryabtsev, Yu.N., and Shapiro, N.B., Fizicheskie mekhanizmy smesheniya morskikh vod s vodami submarinoi razgruzki (Physical Mechanisms of the Mixing of Seawater with the Submarine Discharge Water), Sevastopol: MGI NAN Ukrainy, 2009.

    Google Scholar 

  • Kholodov, V.N., Postsedimentatsionnye preobrazovaniya v elizionnykh basseinakh (Postsedimentary Transformations in Elisional Basins), Moscow: Nauka, 1983.

    Google Scholar 

  • Kholodov, V.N., Sedimentary Basins: Regularities in Their Formation and Classification Principles. Communication 2. Sedimentary Rock Basins, Lithol. Miner. Resour., 2010, no. 3, pp. 238–274.

    Article  Google Scholar 

  • Khrustalev, Yu.P., Zakonomernosti Sovremennogo osadkonakopleniya v Severnom Kaspii (Regularities of Recent Sedimentation in the northern Caspian region), Rostov-on-Don: Rostov. Univ., 1978.

    Google Scholar 

  • Kozlov, V.G. and Levshenko, T.V., Microelements in pore waters of Upper Cenozoic sediments in the southern Caspian region, Byull. Mosk. O-va Isp. Prirody. Otd. Geol, 1987, vol. 62, no. 4, pp. 130–134.

    Google Scholar 

  • Krainov, S.R., Ryzhenko, B.N., and Shvets, V.M., Geokhimiya podzemnykh vod (Geochemistry of Groundwaters), Moscow: Nauka, 2004.

    Google Scholar 

  • Lebedev, L.I., Maev, E.G., Bordovskii, O.K., and Kulakova, L.S., Osadki Kaspiiskogo morya (Sediments of the Caspian Sea), Moscow: Nauka, 1973.

    Google Scholar 

  • Lekhov, A.V., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: MGU, 2010.

    Google Scholar 

  • Leonova, G.A., Geochemical role of plankton of continental water systems in the concentration and redistribution of microelements, Extended Abstract of DSc (Geol.–Miner.) Dissertation, Novosibirsk: Inst. Geol. Miner., 2007.

    Google Scholar 

  • Leont’ev, O.K., Maev, E.G., and Rychagov, G.I., Geomorfologiya beregov i dna Kaspiiskogo morya (Geomorphology of Coasts and Bottom of the Caspian Sea), Moscow: MGU, 1977.

    Google Scholar 

  • Levshenko, T.V., Role of organic matter in metamorphization of the chemical composition of pore waters in recent sedimentation basins, Geol. Nefti Gaza, 1981, no. 4, pp. 38–42.

    Google Scholar 

  • Lisitsin, A.P., Lavinnaya sedimentatsiya i pereryvy v osadkonakoplenii v moryakh i okeanakh (Avalanche Sedimentation and Hiatuses in Seas and Oceans), Moscow: Nauka, 1988.

    Google Scholar 

  • Lubchenko, I.Yu., Kholodov, V.N., Khrustalev, Yu.P., et al., Kaspiiskoe more: Problemy sedimentogeneza (The Caspian Sea: Problems of Sedimentogenesis), Moscow: Nauka, 1989.

    Google Scholar 

  • Luhrmann, L., Noseck, U., and Tix, C., Model on contaminant transport in porous media in the presence of colloids applied to actinide migration in column experiments, Water Res. Res., 1998, vol. 34, no. 3, pp. 421–426.

    Article  Google Scholar 

  • Lukner, L. and Shestakov, V.M., Modelirovanie geofil’tratsii (Modeling of Geofiltration), Moscow: Nedra, 1976.

    Google Scholar 

  • Meier, H., Zimmerhackl, E., and Zietler, G., Modeling of colloid-associated radionuclide transport in porous groundwater aquifer at the Gorleben site, Germany, Geochem. J., 2003, vol. 37, pp. 325–350.

    Article  Google Scholar 

  • Moiseev, Yu.G., Perov, A.A., Sorokin, N.A., et al., Some experimental results related to the municipal service hydrological-optical complex, in Morskoe i ekologicheskoe priborostroenie (Marine and Ecological Instrumentation), Sevastopol: MGI NAN Ukrainy, 1995, p. 95.

    Google Scholar 

  • Pit’eva, K.E., Gidrogeokhimiya (Hydrogeochemistry), Moscow: MGU, 1988.

    Google Scholar 

  • Pit’eva, K.E. and Golovanova, O.V., Prediction of the influence of large industrial complexes on the quality of underground and river waters during the Caspian Sea level rise, in Materialy mezhdunarodnogo simpoziuma “Podzemnyi stok v pribrezhnoi zone” (Materials of the Int. Symp. “Underground Discharge in the Coastal Zone”), Moscow, 1996.

    Google Scholar 

  • Pit’eva, K.E., Golovanova, O.V., Melamed, I.G., and Chekhovskikh, M.M., Hydrogeochemical conditions of the Pleistocene aquifer system in the lower Volga region, Vestn. Mosk. Geol. Univ., Ser. Geol., 2005a, no. 2, pp. 54–59.

    Google Scholar 

  • Pit’eva, K.E., Golovanova, O.V., Melamed, I.G., and Chekhovskikh, M.M., Formation of the chemical composition of Pleistocene groundwaters in the lower Volga region, Vestn. Mosk. Geol. Univ., Ser. Geol., 2005b, no. 3, pp. 62–68.

    Google Scholar 

  • Pushkina, Z.V., Groundwaters in Recent, Quaternary, and Pliocene sediments of the southern Caspian region, Litol. Polezn. Iskop., 1963, no. 3, pp. 3–18.

    Google Scholar 

  • Reaction and Movement of Organic Chemical in Soils, Soil Sci. Am. Spec. Publ., 1989, no. 22.

  • Rumynin, V.G., Geomigratsionnye modeli v gidrogeologii (Geomigration Models in Hydrogeology), St. Petersburg: Nauka, 1158.

  • Rumynin, V.G. and Sindalovskii, L.N., Study of the influence of injection of sea waters upon the quality of groundwaters in the Andarax delta region (Almeria province, Spain), Geoekologiya, 2006, no. 6, pp. 496–508.

    Google Scholar 

  • Sayles, F.L., The composition and diagenesis of interstitial solution, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 527–545.

    Article  Google Scholar 

  • Sergeeva, E.S., Frolov, V.T., Shvanov, V.N., et al., Sistematika i klassifikatsiya osadochnykh porod i ikh analogov (Systematics and Classification of Sedimentary Rocks and Their Analogs), St. Petersburg: Nedra, 1998.

    Google Scholar 

  • Sharer, M., Park, J.-H., Voice, Th.C., and Boyd, S.A., Time dependence of chlorobenzene sorption/desorption by soils, Soil Sci. Soc. Am. J., 2003, vol. 67, pp. 1740–1745.

    Article  Google Scholar 

  • Shchetinin, Yu.T., Kondrat’ev, S.I., Dolotov, V.V., et al., Submarine sources of fresh water on the southern coast of Crimea, in Issledovaniya shel’fovoi zony Azovo-Chernomorskogo basseina (Study of the Shelf Zone of the Azov–Black Sea Basin), Sevastopol: MGI, 1995, pp. 116–124.

    Google Scholar 

  • Shestakov, V.M., Gidrogeodinamika (Hydrogeodynamics), Moscow: MGU, 1995.

    Google Scholar 

  • Shishkina, O.V., Geokhimiya morskikh i okeanicheskikh ilovykh vod (Geochemistry of Marine and Oceanic Mud Waters), Moscow: Nauka, 1972.

    Google Scholar 

  • Steefel, C.I., Caroll, S., Zhao, P., and Roberts, S., Cesium migration in Handford sediment: a multisite cation exchange model based on laboratory transport experiments, J. Contam. Hydrol., 2003, vol. 67, pp. 219–246.

    Article  Google Scholar 

  • Strakhov, N.M., Diagenesis of sediments and its significance for sedimentary ore formation, Izv. Akad. Nauk SSSR, Ser. Geol., 1953, no. 5, pp. 12–49.

    Google Scholar 

  • Strakhov, N.M., Sedimentation in the Caspian Sea, in Obrazovanie osadkov v sovremennykh vodoemakh (Formation of Sediments in Recent Basins), Moscow: AN SSSR, 1954, pp. 137–179.

    Google Scholar 

  • Strakhov, N.M., Cognition of diagenesis, in Voprosy mineralogii osadochnykh obrazovanii (Problems in the Mineralogy of Sedimentary Formations), Lvov: L’vov. Univ., 1956, issue 3/4, pp. 137–179.

    Google Scholar 

  • Strakhov, N.M., Osadkonakoplenie v sovremennykh vodoemakh: Izbr. tr. (Sedimentation in Recent Basins: Collected Works), Knipper, A.L, Ed., Moscow: Nauka, 1993.

  • Tageeva, N.V. and Tikhomirova, M.M., Geokhimiya porovykh vod pri diageneze morskikh osadkov (Hydrochemistry of Interstitial Waters in the Diagenesis of Marine Sediments), Moscow: AN SSSR, 1962.

    Google Scholar 

  • Tinsley, I.J., Chemical Concepts in Pollutant Behavior,, New Jersey:. Willey and Sons,, 2004.

    Book  Google Scholar 

  • Tompson, A.F.B., Numerical simulation of chemical migration in physically and chemically heterogeneous porous media, Water Resour. Res., 1993, vol. 29, no. 3, pp. 3709–3726.

    Article  Google Scholar 

  • Tompson, A.F.B. and Jackson, K.J., Reactive transport in heterogeneous systems: An overview, Rev. Mineral. Geochem., 1996, vol. 34, no. 1, pp. 269–310.

    Google Scholar 

  • Van de Weerd, H., Leijnse, A., and van Riemsdijk, W.H., Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions, J. Contam. Hydrol., 1998, vol. 32, pp. 313–331.

    Article  Google Scholar 

  • Varshal, G.M., Velyukhanova, T.K., Chkhetiya, D.N, et al., Sorption on Humic Acids as a Basis for the Mechanism of Primary Accumulation of Gold and Platinum Group Elements in Black Shales, Lithol. Miner. Resour., 2000, no. 6, pp. 538–545.

    Article  Google Scholar 

  • Vershinin, A.V. and Rozanov, A.G., Khimicheskii obmen na granitse voda-dno v okeanakh i moryakh (Chemical Exchange at the Water–Bottom Interface in Oceans and Seas), Moscow: GEOS, 2002.

    Google Scholar 

  • Walter, A.L., Frind, E.O., Blowes, D.W., et al., Modeling of multicomponent reactive transport in groundwater. 1. Model development and evaluation, Water Resour. Res., 1994a, vol. 30, no. 11, pp. 3137–3148.

    Article  Google Scholar 

  • Walter, A.L., Frind, E.O., Blowes, D.W., et al., Modeling of multicomponent reactive transport in groundwater. 2. Metal mobility in aquifers impacted by acidic mine tailings discharge, Water Resour. Res., 1994b, vol. 30, no. 11, pp. 3149–3158.

    Article  Google Scholar 

  • Wittman, R.S., Buck, E.C., and Hanson, B.D., Data analysis of plutonium sorption on colloids in a minimal kinetics model, Techn. Rep. Pacific Northwest National Lab., 2005, PNNL-15285.

    Google Scholar 

  • Yanina, T.A., Paleogeography of the Ponto-Caspian basins in the Pleistocene based on the results of malacofaunistic analysis, Extended Abstract of DSc (Geogr.) Dissertation, Moscow: Moscow State Univ., 2009.

    Google Scholar 

  • Zatenatskaya, N.P., Porovye vody osadochnykh porod (Interstitial Waters in Sedimentary Rocks), Moscow: Nauka, 1974.

    Google Scholar 

  • Zektser, I.S., Dzhamalov, R.G., and Meskheteli, A.V., Podzemnyi vodoobmen sushi i morya (Underground Water Exchange between Land and Sea), Leningrad: Gidrometeoizdat, 1984.

    Google Scholar 

  • Zverev, V.P., Podzemnye vody zemnoi kory i geologicheskie protsessy (Groundwaters in the Earth’s Crust and Geological Processes), Moscow: Nauchn. Mir, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Golovanova.

Additional information

Original Russian Text © O.V. Golovanova, 2015, published in Litologiya i Poleznye Iskopaemye, 2015, No. 4, pp. 362–382.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanova, O.V. Groundwater of the Pleistocene aquifer system in the North Caspian and Near-Caspian regions: Communication 2. Significance of sedimentary water integrity for the development of sedimentary basins and paleogeological reconstructions. Lithol Miner Resour 50, 322–340 (2015). https://doi.org/10.1134/S0024490215040021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490215040021

Keywords

Navigation