Skip to main content
Log in

Modularity, poly­typism, topology, and complexity of crystal structures of inorganic compounds (Review)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The modular approach is a powerful tool in current inorganic crystal chemistry. It enables not only a more detailed analysis of the known structures and the determination of structural relationships between them, but also the prediction of potentially novel structures that can be applied in modern materials science. A large number of examples of compounds with modular structures allows us to state that structural modularity is a widely spread phenomenon among natural and synthetic compounds. The use of the formalism of OD theory makes it possible to analyze the symmetry of polytypes with different crystal structures. In this review, we collected new data published in the last 15 years about OD structures and phenomena of polytypism and modularity in inorganic compounds, as well as the topological approach to the analysis of crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Scheme 4
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93
Fig. 94
Fig. 95
Fig. 96
Fig. 97
Fig. 98
Fig. 99
Fig. 100
Fig. 101
Fig. 102
Fig. 103
Fig. 104
Fig. 105
Fig. 106
Fig. 107
Fig. 108
Fig. 109
Fig. 110
Fig. 111
Fig. 112
Fig. 113
Fig. 114
Fig. 115
Fig. 116
Fig. 117
Fig. 118
Fig. 119
Fig. 120
Fig. 121
Fig. 122
Fig. 123
Fig. 124
Fig. 125
Fig. 126
Fig. 127
Fig. 128
Fig. 129
Fig. 130
Fig. 131
Fig. 132
Fig. 133
Fig. 134
Fig. 135
Fig. 136
Fig. 137
Fig. 138
Fig. 139
Fig. 140
Fig. 141
Fig. 142
Fig. 143
Fig. 144
Fig. 145
Fig. 146
Fig. 147
Fig. 148
Fig. 149
Fig. 150
Fig. 151
Fig. 152
Fig. 153
Fig. 154
Fig. 155
Fig. 156

Notes

  1. Strictly speaking, there are screw symmetry operations (screw turns with a translation along the axis direction) for ±2π/N angles, where N = 2, 3, 4 or 6. The screw axis is designated as Nr if its translational component is r/N relative to a, b, c0 vectors.

  2. Layer symmetry groups \(\mathbf{G}_{2}^{3}\) contain two translations (i.e. \(\mathbf{G}_{2}^{3}\supset {{T}_{2}}\)) and are derived from 17 planar groups \(\mathbf{G}_{2}^{2}\) (so-called wallpaper symmetry groups) by adding the mirror reflection relative to the xy coordinate plane.

  3. The equivalence of layers is designated by the symbol ::; e.g., the equivalence of the pair of (Lp, Lp+1) and (Lq, Lq+1) layers is designated as (Lp, Lp+1) :: (Lq, Lq+1).

  4. Not confuse with the number of formula units (Z).

  5. The number |G| of elements in G is called the order of group G.

  6. The layer position consistent with the position of the previous layer and VC-conditions.

  7. For OD structures with the number M > 1 of OD layers, the polar layers are designated as bi (or di depending on the type of orientation relative to the layer plane), and non-polar are marked Ai.

  8. Orthorhombic and monoclinic representatives of the lamprophyllite group [173] correspond to the same OD family consisting of two types of layers (category IV: non-polar layers are represented by HOH modules (A2 = L2n) and layers of A cations (A1 = L2n+1)) described by one groupoid \(\begin{matrix} \ P(1)2/m1 & & P(2/n){{2}_{1}}/m{{2}_{1}}m \\ & \ [0,s] \\ \end{matrix}\), where s ~ –0.09 [10].

  9. In universal algebra, groupoid m = ‹M,*› means a non-empty set M in which a binary operation * is given reflecting sets M×M in M. At present, the term magma [911] (or simply algebra [912]) is used to designate this groupoid.

  10. Morphisms are also shown as arrows φ: XY.

  11. In this case, pairs of identical (Lp,Lp+1,Lp+2) triplets are implied, e.g., (L1,L2,L3)::(L2,L3,L4).

  12. The antigorite polysomatic series belongs to the kaolinite-serpentine group, which contain two-layer ОТ modules [913]. The general formula for the representatives of the antigorite polysomatic series can be written as

    $$\{{{M}_{3(n-1)}}{{\psi }_{2(2n-3)}}(\text{S}{{\text{i}}_{2n}}{{\text{O}}_{5n}})\}$$
    (44)

    where n ≥ 2. The symmetry of representatives with even n is characterized by space group C2/m, and the symmetry of representatives with odd n is Pm [156]. Obviously, for n → ∞ the formula takes the form {M2Ψ4(Si2O5)}, which corresponds to the stoichiometry of minerals of the serpentine subgroup characterized by layered ОТ modules [150].

  13. This stoichiometry is obtained when formula (44) characterizing the TOT module stoichiometry [115] is added with a {MΨ2}fragment. In this case, according to T. Zoltai [113], the module stacking sequence can be written as R–0–0 for shattuckite and R–0–R–0–0 for plancheite. Thus, the formula of the TOT module in structures of the shattuckite-plancheite polysomatic series can be rewritten as:

    \(\{M_{(3n-1)}\psi_{2(n-1)}(\text{Si}_{2n}\text{O}_{(5n+1)})_2\} + \{M\psi_2\} = \{M_{3n}\psi_{2n}(\text{Si}_{2n}\text{O}_{(5n+1)})_2\}\).

  14. It was shown previously [170] that the XRD pattern of molybdophyllite was characterized by the presence of diffuse peaks, which indicated a partial disorder of TOT layers and the OD structure. Here the OD layer with the P321 symmetry with a1, a2, c0 (non-translational vector) is related to a, b, c translational vectors of the molybdophyllite structure as follows [170]: a1 = (ab)/2; a2 = b; a1 = a2 = 9.373 Å; c0 = c sinβ = 13.944 Å. The OD grupoid has the form

    $$\begin{matrix} P2 & 2 & 2 & (3) & 1 & 1 & 1 \\ \{{{2}_{r}} & {{2}_{{{r}'}}} & {{2}_{{{r}''}}} & {{3}_{3}} & 1 & 1 & 1 \\\end{matrix},$$
    (50)

    where r + r′ + r′′ = 0 [ 170 ].

  15. The merotype series means that the structures of all representatives contains at least two fragments. One of them is constantly repeated, and another (second, third, fourth, etc.) can be unique for each structure of the series compounds. The plesiotype series is distinguished when all representatives are characterized by the same number of topologically identical modules that, nonetheless, can differ from each other by the chemical composition.

  16. 2M and 2O polytypes of lamprophyllite-related minerals can be described within one OD family [69] characterized by the presence of two types of non-polar OD layers and assigned to category IV [10]. The first layer corresponds to the HOH module and has the symmetry P(1)2/m1. The second OD layer with the symmetry P(2/n) 21/m 21/m corresponds to the interpackage space [10, 172]. In accordance with the ZNF ratio, only two MDO polytypes are possible: monoclinic (space group C2/m) and orthorhombic (space group Pnmn) [10, 73]. In the monoclinic polytype, the generating operation is the translation t = a0 + b/2 + 2sc (b ~ 7 Å, c ~ 5.4 Å; a0 ~ 10 Å). In the orthorhombic polytype, the generating operation is the glide reflection plane with the translational component a0+b/2 perpendicular to c. The respective OD grupoid has the form

    $$\begin{matrix} \ P(1)2/m1 & & P(2/n){{2}_{1}}/m{{2}_{1}}m \\ & \ [0,s] \\ \end{matrix}$$
    (54)

    where s takes values from –0.085 to –0.10 [10].

  17. In the schüllerite structure, the HOH module corresponds to linkage 3 [175] and is characterized by the symmetry [172, 173], which formally does not meet the IMA CNMNC criteria. Nonetheless, schüllerite often occurs in association with lamprophyllite and related minerals and also makes epitaxial intergrowths with them [182]. Schüllerite is characterized by the same structural features as the minerals related to lamprophyllite (coordination number 5 for L cations) and the absence of anionic groups and water molecules in the interpackage space. Furthermore, the general crystal chemical formula of schüllerite is close to that of minerals related to lamprophyllite and differes only in the presence of four symmetrically non-equivalent М sites in the octahedral О layer, (Z = 2): A2[M1M2M2′M3X2][L2O2(Si2O7)].

  18. All calculations were performed using the ToposPro program package [24]. In the calculations, we used the following significance criteria for working ions: Li+ (elementary channel radius, Rchan = 2.02 Å; elementary void radius Rsd = 1.38 Å); Na+ (Rchan = 2.16 Å; Rsd = 1.54 Å); Ag+ (Rchan = 2.20 Å; Rsd = 1.58 Å); Pb2+ (Rchan = 2.23 Å; Rsd = 1.62 Å); K+ (Rchan = 2.30 Å; Rsd = 1.70 Å); Rb+ (Rchan = 2.38 Å; Rsd = 1.78 Å); Cs+ (Rchan = 2.47 Å; Rsd = 1.88 Å).

  19. Taking into account a large number of publications devoted to various aspects of the synthesis, structure, properties, and applications of compounds forming a relatively small family considred here, in composing the bibliography to this section, we included only the most representative reviews and the most recent or bright examples illustrating the main text.

  20. Crystal structures of gainesite-group minerals are characterized by the presence of pentameric [BeP4O16]10– clusters.

  21. This transformation of the formula is highly justified because general formula (55) reflects only the stoichiometry between A and B cations and the relation between the number of B cations with the number of anions. Although the AxTa7O19 and AxNb7O19 compounds have the same stoichiometry, they differ in the stacking patterns of o- and p-modules: …|ppo|… (Fig. 46с) and …|pppopo|… (Fig. 46d) respectively.

  22. In the structure with the space group P63/mmc, the glaserite packing of atoms is violated due to the presence of alternative tetrahedra and ten-vertex polyhedra.

  23. For organic and metal-organic compounds with M = 1 OD layers the systematic studies of Prof. Berthold Stöger on the analysis of crystal structures, polytypism, and twinning [914-917] and some other works [41, 918] can also be mentioned.

  24. The tiling point symbol [600] is written as Aa.Bb...; the mentioned means that a angles belonging to the smallest A cycle converge in the network vertex; b angles belonging to the smallest B cycle, etc., with A < B < ... and a + b + ... = CN(CN – 1)/2.

  25. It should be noted that the maximum possible symmetry of the three-link wollastonite-type chain is described by cylindrical group pm2m.

  26. This symbol indicates that the repeating fragment of the chain contains two doubly connected 2Т tetrahedra and four three-connected 3T tetrahedra [596]. In the general form, the topological symbol of chains is based on the expression cTr = 1Tr2Tr3Tr4Tr, which shows possible types of the connection of tetrahedra (с = 1-4) in the repeating fragment and their number (r ≥ 0) [595, 596].

  27. This unusual decrease in the Rad(min) value for modeling the geological conditions such as increased temperatures of late hydrothermal solutions and pressures affect the cation diffusion.

  28. CBUs are large structural fragments occurring in two or more types of frameworks [619].

  29. Amount of information per atom in the structure is defined by the formula [90]:

    \({}^{str}{{I}_{G}}=-\sum\nolimits_{i=1}^{k}{{{p}_{i}}{{\log }_{2}}{{p}_{i}}},\)

    where р is the probability of a random selection of an atom from the i-th crystallographic orbit (pi = mi/v); mi is the multiplicity of the crystallographic orbit with respect to the reduced cell; v is the number of atoms in the reduced cell \((\nu =\sum\nolimits_{i=1}^{k}{{{m}_{i}}})\).

    To determine the total amount of information per cell the following formula is used:

    \({}^{struct}{{I}_{G,\text{total}}}=-\nu ({}^{struct}{{I}_{G}})=-\nu \sum\nolimits_{i=1}^{k}{{{p}_{i}}{{\log }_{2}}{{p}_{i}}}.\)

  30. According to S. V. Krivovichev’s classification [89, 90] based on the complexity parameter IG,total, structures are divided into very simple (0-20 bit/unit cell), simple (20-100 bit/unit cell), intermediate (100-500 bit/unit cell), complex (500-1000 bit/unit cell), and very complex (>1000 bit/unit cell).

  31. Cleavage is the ability of crystal of minerals and inorganic compounds to split with the formation of smooth planes (cleavage planes) characterized by the minimum cohesion in the direction perpendicular to the plane [920].

  32. The name is written in italics because the mineral was officially discredited [905].

REFERENCES

  1. Computational Materials Discovery / Eds. A. Oganov, G. Saleh, and A. Kvashnin. London, UK: Royal Society of Chemistry, 2018.

  2. D. Y. Pushcharovsky and Y. M. Pushcharovsky. The mineralogy and the origin of deep geospheres: A review. Earth-Sci. Rev., 2012, 113(1/2), 94-109. https://doi.org/10.1016/j.earscirev.2012.03.004

    Article  CAS  Google Scholar 

  3. G. R. Desiraju. Supramolecular synthons in crystal engineering - A new organic synthesis. Angew. Chem., Int. Ed. Engl., 1995, 34(21), 2311-2327. https://doi.org/10.1002/anie.199523111

    Article  CAS  Google Scholar 

  4. G. R. Desiraju. Crystal engineering: From molecule to crystal. J. Am. Chem. Soc., 2013, 135(27), 9952-9967. https://doi.org/10.1021/ja403264c

    Article  CAS  PubMed  Google Scholar 

  5. O. M. Yaghi, M. O′Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941), 705-714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  6. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp. Metal-organic framework materials as chemical sensors. Chem. Rev., 2012, 112(2), 1105-1125. https://doi.org/10.1021/cr200324t

    Article  CAS  PubMed  Google Scholar 

  7. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5), 1450. https://doi.org/10.1039/b807080f

    Article  CAS  PubMed  Google Scholar 

  8. M. O′Keeffe and O. M. Yaghi. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev., 2012, 112(2), 675-702. https://doi.org/10.1021/cr200205j

    Article  CAS  PubMed  Google Scholar 

  9. Modular Aspects of Minerals / Ed. S. Merlino: EMU Notes in Mineralogy, Vol. 1. European Mineralogical Union, 1997. https://doi.org/10.1180/emu-notes.1

    Book  Google Scholar 

  10. G. Ferraris, E. Makovicky, and S. Merlino. Crystallography of Modular Materials. Oxford University Press, 2008. https://doi.org/10.1093/acprof:oso/9780199545698.001.0001

    Book  Google Scholar 

  11. S. V. Krivovichev. Structure description, interpretation and classification in mineralogical crystallography. Crystallogr. Rev., 2017, 23(1), 2-71. https://doi.org/10.1080/0889311x.2016.1220002

    Article  Google Scholar 

  12. G. Ferraris. Polysomatic aspects of microporous minerals - heterophyllosilicates, palysepioles and rhodesite-related structures. Rev. Mineral. Geochem., 2005, 57(1), 69-104. https://doi.org/10.2138/rmg.2005.57.3

    Article  CAS  Google Scholar 

  13. D. R. Veblen. Polysomatism and polysomatic series: A review and applications. Am. Mineral., 1991, 76, 801.

  14. B. B. Zvyagin. Polytypism of crystal structures. Comput. Math. Appl., 1988, 16(5-8), 569-591. https://doi.org/10.1016/0898-1221(88)90247-7

    Article  Google Scholar 

  15. G. S. Oleinik and N. V. Danilenko. Polytype formation in nonmetallic substances. Russ. Chem. Rev., 1997, 66(7), 553-577. https://doi.org/10.1070/rc1997v066n07abeh000286

    Article  Google Scholar 

  16. A. R. Verma and P. Krishna. Polymorphism and Polytypism in Crystals. Wiley, 1966.

  17. A. Guinier, G. B. Bokij, K. Boll-Dornberger, J. M. Cowley, S. Ďurovič, H. Jagodzinski, P. Krishna, P. M. de Wolff, B. B. Zvyagin, D. E. Cox, P. Goodman, T. Hahn, K. Kuchitsu, and S. C. Abrahams. Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Acta Crystallogr., Sect. A: Found. Crystallogr., 1984, 40(4), 399-404. https://doi.org/10.1107/s0108767384000842

    Article  Google Scholar 

  18. K. Dornberger-Schiff. Grundzuge einer Theorie von OD-Strukturen aus Schichten. Abh. Dtsch. Akad. Wiss. Berlin, Kl. Chem., Geol. Biol., 1964, 3, 107.

  19. S. Ďurovič and J. Hybler. OD structures in crystallography - Basic concepts and suggestions for practice. Z. Kristallogr. - Cryst. Mater., 2006, 221(1), 63-76. https://doi.org/10.1524/zkri.2006.221.1.63

    Article  CAS  Google Scholar 

  20. J. V. Smith. Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev., 1988, 88(1), 149-182. https://doi.org/10.1021/cr00083a008

    Article  CAS  Google Scholar 

  21. N. W. Ockwig, O. Delgado-Friedrichs, M. O′Keeffe, and O. M. Yaghi. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res., 2005, 38(3), 176-182. https://doi.org/10.1021/ar020022l

    Article  CAS  PubMed  Google Scholar 

  22. V. A. Blatov, A. P. Shevchenko, and V. N. Serenzhkin. Crystal space analysis by means of Voronoi-Dirichlet polyhedra. Acta Crystallogr., Sect. A: Found. Crystallogr., 1995, 51(6), 909-916. https://doi.org/10.1107/s0108767395006799

    Article  Google Scholar 

  23. V. A. Blatov. Voronoi-Dirichlet polyhedra in crystal chemistry: Theory and applications. Crystallogr. Rev., 2004, 10(4), 249-318. https://doi.org/10.1080/08893110412331323170

    Article  CAS  Google Scholar 

  24. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des., 2014, 14(7), 3576-3586. https://doi.org/10.1021/cg500498k

    Article  CAS  Google Scholar 

  25. O. A. Blatova, A. A. Golov, and V. A. Blatov. Natural tilings and free space in zeolites: Models, statistics, correlations, prediction. Z. Kristallogr. - Cryst. Mater., 2019, 234(7-8), 421-436. https://doi.org/10.1515/zkri-2018-2143

    Article  CAS  Google Scholar 

  26. G. Sankar, R. G. Bell, J. M. Thomas, M. W. Anderson, P. A. Wright, and J. Rocha. Determination of the structure of distorted TiO6 units in the titanosilicate ETS-10 by a combination of X-ray absorption spectroscopy and computer modeling. J. Phys. Chem., 1996, 100(2), 449-452. https://doi.org/10.1021/jp952205d

    Article  CAS  Google Scholar 

  27. N. V. Chukanov, I. V. Pekov, and R. K. Rastsvetaeva. Crystal chemistry, properties and synthesis of microporous silicates containing transition elements. Russ. Chem. Rev., 2004, 73(3), 205-223. https://doi.org/10.1070/rc2004v073n03abeh000825

    Article  CAS  Google Scholar 

  28. N. V. Chukanov. Heterosilicates with tetrahedral-octahedral frameworks: Mineralogical and crystal-chemical aspects. Rev. Mineral. Geochem., 2005, 57(1), 105-143. https://doi.org/10.2138/rmg.2005.57.4

    Article  CAS  Google Scholar 

  29. J. Rocha and M. W. Anderson. Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur. J. Inorg. Chem., 2000, 2000(5), 801-818. https://doi.org/10.1002/(sici)1099-0682(200005)2000:5<801::aid-ejic801>3.0.co;2-e

    Article  Google Scholar 

  30. J. Rocha. Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Rev. Mineral. Geochem., 2005, 57(1), 173-201. https://doi.org/10.2138/rmg.2005.57.6

    Article  CAS  Google Scholar 

  31. J. Rocha, D. Ananias, and F. A. A. Paz. 4.05 - Photoluminescent zeolite-type lanthanide silicates. In: Comprehensive Inorganic Chemistry II / Ed. J. Reedijk. Elsevier, 2013, 87-110. https://doi.org/10.1016/b978-0-08-097774-4.00406-x

    Chapter  Google Scholar 

  32. N. V. Chukanov, V. V. Nedelko, L. N. Blinova, L. A. Korshunova, L. V. Olysych, I. S. Lykova, I. V. Pekov, J. C. Buhl, and W. Depmeier. The role of additional anions in microporous aluminosilicates with cancrinite-type framework. Russ. J. Phys. Chem. B, 2012, 6(5), 593-600. https://doi.org/10.1134/s1990793112050120

    Article  CAS  Google Scholar 

  33. K. Popa and C. C. Pavel. Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives. Desalination, 2012, 293, 78-86. https://doi.org/10.1016/j.desal.2012.02.027

    Article  CAS  Google Scholar 

  34. Y. V. Seryotkin, V. V. Bakakin, and I. V. Pekov. Behavior of microporous zirconosilicate hilairite under high pressure. J. Struct. Chem., 2014, 55(4), 666-673. https://doi.org/10.1134/s0022476614040118

    Article  CAS  Google Scholar 

  35. Y. V. Seryotkin, V. V. Bakakin, and I. V. Pekov. Structural evolution of microporous zirconosilicate elpidite under high pressure. J. Struct. Chem., 2014, 55(7), 1252-1259. https://doi.org/10.1134/s0022476614070087

    Article  CAS  Google Scholar 

  36. S. M. Aksenov, E. A. Bykova, R. K. Rastsvetaeva, N. V. Chukanov, I. P. Makarova, M. Hanfland, and L. Dubrovinsky. Microporous crystal structure of labuntsovite-Fe and high-pressure behavior up to 23 GPa. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2018, 74(1), 1-11. https://doi.org/10.1107/s205252061700498x

    Article  CAS  Google Scholar 

  37. D. Comboni, P. Lotti, G. D. Gatta, M. Lacalamita, E. Mesto, M. Merlini, and M. Hanfland. Armstrongite at non-ambient conditions: An in-situ high-pressure single-crystal X-ray diffraction study. Microporous Mesoporous Mater., 2019, 274, 171-175. https://doi.org/10.1016/j.micromeso.2018.07.047

    Article  CAS  Google Scholar 

  38. J. Rocha, L. D. Carlos, F. A. A. Paz, and D. Ananias. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev., 2011, 40(2), 926-940. https://doi.org/10.1039/c0cs00130a

    Article  CAS  PubMed  Google Scholar 

  39. S. V. Krivovichev. The principle of maximal simplicity for modular inorganic crystal structures. Crystals, 2021, 11(12), 1472. https://doi.org/10.3390/cryst11121472

    Article  CAS  Google Scholar 

  40. L. Bindi, M. Nespolo, S. V. Krivovichev, G. Chapuis, and C. Biagioni. Producing highly complicated materials. Nature does it better. Rep. Prog. Phys., 2020, 83(10), 106501. https://doi.org/10.1088/1361-6633/abaa3a

    Article  CAS  PubMed  Google Scholar 

  41. S. Merlino. OD approach to polytypism: Examples, problems, indications. Z. Kristallogr., 2009, 224(5/6), 251-260. https://doi.org/10.1524/zkri.2009.1133

    Article  CAS  Google Scholar 

  42. G. D. Ilyushin. Geometrical and topological model of formation, selection, and evolution of precursor nanoclusters in the convergent matrix self-assembly mechanism of crystal formation. Russ. J. Inorg. Chem., 2012, 57(14), 1737-1775. https://doi.org/10.1134/s0036023612140033

    Article  CAS  Google Scholar 

  43. G. D. Ilyushin. Theory of cluster self-organization of crystal-forming systems: geometrical–topological modeling of nanocluster precursors with a hierarchical structure. Struct. Chem., 2012, 23(4), 997-1043. https://doi.org/10.1007/s11224-012-0014-2

    Article  CAS  Google Scholar 

  44. V. V. Ivanov and V. M. Talanov. Principle of modular crystal structure. Crystallogr. Rep., 2010, 55(3), 362-376. https://doi.org/10.1134/s1063774510030028

    Article  CAS  Google Scholar 

  45. V. V. Ivanov and V. M. Talanov. Algorithm of choice of the structural module and modular design of crystals. Russ. J. Inorg. Chem., 2010, 55(6), 915-924. https://doi.org/10.1134/s0036023610060148

    Article  CAS  Google Scholar 

  46. M. Nespolo, B. Souvignier, and B. Stöger. Groupoid description of modular structures. Acta Crystallogr., Sect. A: Found. Adv., 2020, 76(3), 334-344. https://doi.org/10.1107/s2053273320000650

    Article  CAS  Google Scholar 

  47. J.-G. Eon. Groupoids and labelled quotient graphs: A topological analysis of the modular structure in pyroxenes. Acta Crystallogr., Sect. A: Found. Adv., 2017, 73(3), 238-245. https://doi.org/10.1107/s2053273317003333

    Article  CAS  Google Scholar 

  48. M. Nespolo, A. Umayahara, and J.-G. Eon. A groupoid and graph-theoretical analysis of the biopyribole–palysepiole series. Eur. J. Mineral., 2018, 30(3), 413-428. https://doi.org/10.1127/ejm/2018/0030-2726

    Article  CAS  Google Scholar 

  49. H. Baumhauer. VII. Über die Krystalle des Carborundums. Z. Kristallogr. - Cryst. Mater., 1912, 50(1-6), 33-39. https://doi.org/10.1524/zkri.1912.50.1.33

    Article  CAS  Google Scholar 

  50. F. C. Frank. CII. The growth of carborundum: Dislocations and polytypism. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1951, 42(332), 1014-1021. https://doi.org/10.1080/14786445108561346

    Article  Google Scholar 

  51. Z. V. Vrublevskaya, A. P. Zhukhlistov, B. B. Zvyagin, O. V. Sidorenko, S. V. Soboleva, and A. F. Fedotov. Vysokovol′tnaya elektronografiya v issledovanii sloistykh mineralov (High-Voltage Electron Diffraction in the Study of Layered Minerals). Moscow, Russia: Nauka, 1979. [In Russian]

  52. S. W. Bailey, V. A. Frank-Kamenetskii, S. Goldsztaub, A. Kato, A. Pabst, H. Schulz, H. F. W. Taylor, M. Fleischer, and A. J. C. Wilson. Report of the International Mineralogical Association (IMA)–International Union of Crystallography (IUCr) Joint Committee on Nomenclature. Acta Crystallogr., Sect. A, 1977, 33(4), 681-684. https://doi.org/10.1107/s0567739477001703

    Article  Google Scholar 

  53. S. K. Filatov and P. Paufler. The systematics of crystal polymorphic transformations (generalized on the basis of Buerger′s criteria). Geol. Ore Deposits, 2020, 62(8), 690-703. https://doi.org/10.1134/s1075701520080048

    Article  Google Scholar 

  54. P. C. Piilonen, A. M. McDonald, and A. e E. Lalonde. Kupletskite polytypes from the Lovozero massif, Kola Peninsula, Russia: Kupletskite-1A and kupletskite-Ma2b2c. Eur. J. Mineral., 2001, 13(5), 973-984. https://doi.org/10.1127/0935-1221/2001/0013/0973

    Article  CAS  Google Scholar 

  55. K. Dornberger-Schiff, S. Ďurovič, and B. B. Zvyagin. Proposal for general principles for the construction of fully descriptive polytype symbols. Cryst. Res. Technol., 1982, 17(11), 1449-1457. https://doi.org/10.1002/crat.2170171124

    Article  CAS  Google Scholar 

  56. B. B. Zvyagin and Z. V. Vrublevskaya. Polytype modifications of astrophyllite. Kristallografiya, 1976, 21(5), 949. [In Russian]

  57. B. B. Zvyagin and K. Fichtner. Geometrical conditions for the formation of polytypes with a supercell in the basis plane. Bull. Mineral., 1986, 109(1), 45-47. https://doi.org/10.3406/bulmi.1986.7915

    Article  Google Scholar 

  58. E. Sokolova, F. Cámara, F. C. Hawthorne, and M. E. Ciriotti. The astrophyllite supergroup: nomenclature and classification. Mineral. Mag., 2017, 81(1), 143-153. https://doi.org/10.1180/minmag.2016.080.077

    Article  Google Scholar 

  59. N. A. Yamnova and S. M. Aksenov. New data on astrophyllite supergroup minerals: Crystall chemical mechanisms of the formation of triclinic and monoclinic structures. Crystallogr. Rep., 2021, 66(7), 1169-1184. https://doi.org/10.1134/s106377452107021x

    Article  CAS  Google Scholar 

  60. W. Massa, O. V. Yakubovich, and O. V. Dimitrova. A new cubic form of caesium hexaaquamagnesium phosphate, Cs[Mg(H2O)6](PO4). Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2003, 59(8), i83-i85. https://doi.org/10.1107/s0108270103011417

    Article  PubMed  Google Scholar 

  61. G. V. Kiriukhina, O. V. Yakubovich, E. M. Kochetkova, O. V. Dimitrova, and A. S. Volkov. A first Mn member in the struvite morphotropic series, CsMn(H2O)6(PO4): Hydrothermal synthesis, crystal structure and interconnections within the family of related phosphates. Acta Crystallogr., Sect. C: Struct. Chem., 2018, 74(8), 936-943. https://doi.org/10.1107/s2053229618009798

    Article  CAS  Google Scholar 

  62. N. V. Chukanov, S. M. Aksenov, and R. K. Rastsvetaeva. Structural chemistry, IR spectroscopy, properties, and genesis of natural and synthetic microporous cancrinite- and sodalite-related materials: A review. Microporous Mesoporous Mater., 2021, 323, 111098. https://doi.org/10.1016/j.micromeso.2021.111098

    Article  CAS  Google Scholar 

  63. C. Chopin, T. Armbruster, E. S. Grew, A. Baronnet, C. Leyx, and O. Medenbach. The triplite–triploidite supergroup: Structural modulation in wagnerite, discreditation of magniotriplite, and the new mineral hydroxylwagnerite. Eur. J. Mineral., 2014, 26(4), 553-565. https://doi.org/10.1127/0935-1221/2014/0026-2386

    Article  CAS  Google Scholar 

  64. S. N. Britvin, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, and W. Depmeier. The fluoride route to Lindqvist clusters: Synthesis and crystal structure of layered hexatantalate Na8Ta6O19·26H2O. Inorg. Chem. Commun., 2012, 25, 18-20. https://doi.org/10.1016/j.inoche.2012.08.025

    Article  CAS  Google Scholar 

  65. A. J. Karttunen and T. F. Fässler. Structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks. ChemPhysChem, 2013, 14(9), 1807-1817. https://doi.org/10.1002/cphc.201300133

    Article  CAS  PubMed  Google Scholar 

  66. A. G. Christy. A review of the structures of vaterite: The impossible, the possible, and the likely. Cryst. Growth Des., 2017, 17(6), 3567-3578. https://doi.org/10.1021/acs.cgd.7b00481

    Article  CAS  Google Scholar 

  67. K. Dornberger-Schiff. On order–disorder structures (OD-structures). Acta Crystallogr., 1956, 9(7), 593-601. https://doi.org/10.1107/s0365110x56001625

    Article  CAS  Google Scholar 

  68. K. Dornberger-Schiff and K. Fichtner. On the symmetry of OD-structures consisting of equivalent layers. Krist. Tech., 1972, 7(9), 1035-1056. https://doi.org/10.1515/9783112653784-007

    Chapter  Google Scholar 

  69. K. Dornberger-Schiff and H. Grell-Niemann. On the theory of order–disorder (OD) structures. Acta Crystallogr., 1961, 14(2), 167-177. https://doi.org/10.1107/s0365110x61000607

    Article  Google Scholar 

  70. K. Dornberger-Schiff. OD structures, - a game and a bit more. Krist. Tech., 1979, 14(9), 1027-1045. https://doi.org/10.1002/crat.19790140903

    Article  CAS  Google Scholar 

  71. K. Dornberger-Schiff. Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind. Acta Crystallogr., Sect. A, 1982, 38(4), 483-491. https://doi.org/10.1107/s0567739482001041

    Article  Google Scholar 

  72. K. Dornberger-Schiff and H. Grell. Geometrical properties of MDO polytypes and procedures for their derivation. II. OD families containing OD layers of M > 1 kinds and their MDO polytypes. Acta Crystallogr., Sect. A, 1982, 38(4), 491-498. https://doi.org/10.1107/s0567739482001053

    Article  Google Scholar 

  73. E. L. Belokoneva. Borate crystal chemistry in terms of the extended OD theory: Topology and symmetry analysis. Crystallogr. Rev., 2005, 11(3), 151-198. https://doi.org/10.1080/08893110500230792

    Article  CAS  Google Scholar 

  74. E. L. Belokoneva. Poryadok-besporyadok i politipiya v strukturakh mineralov (Order-Disorder and Polytype in the Structures of Minerals). Moscow, Russia: Mosk. Gos. Univ., 2005. [In Russian]

  75. B. Stöger. Non-crystallographic layer lattice restrictions in order-disorder (OD) structures. Symmetry, 2014, 6(3), 589-621. https://doi.org/10.3390/sym6030589

    Article  CAS  Google Scholar 

  76. J. Grell. Symmetry description of OD crystal structures in group theoretical terms. Acta Applicandae Mathematicae, 1998, 52, 261. https://doi.org/10.1023/a:1005939931744

    Article  Google Scholar 

  77. K. Fichtner. Order-disorder structures. Comput. Math. Appl., 1988, 16(5-8), 469-477. https://doi.org/10.1016/0898-1221(88)90237-4

    Article  Google Scholar 

  78. K. Fichtner. A new deduction of a complete list of OD-groupoid families for OD-structures consisting of equivalent layers. Krist. Tech., 1977, 12(12), 1263-1267. https://doi.org/10.1002/crat.19770121207

    Article  CAS  Google Scholar 

  79. B. B. Zvyagin. A contribution to polytype systematics. Phase Transitions, 1993, 43(1-4), 21-25. https://doi.org/10.1080/01411599308207791

    Article  CAS  Google Scholar 

  80. International Tables for Crystallography / Ed. E. Prince. Chester, England: International Union of Crystallography, 2006, Vol. C. https://doi.org/10.1107/97809553602060000103

    Book  Google Scholar 

  81. International Tables for Crystallography / Eds. V. Kopský and D. B. Litvin. Chester, England: International Union of Crystallography, 2010, Vol. E. https://doi.org/10.1107/97809553602060000109

    Book  Google Scholar 

  82. W. T. Holser. Point groups and plane groups in a two-sided plane and their subgroups. Z. Kristallogr., 1958, 110(1-6), 266-281. https://doi.org/10.1524/zkri.1958.110.16.266

    Article  Google Scholar 

  83. H. Grell. How to choose OD layers. Acta Crystallogr., Sect. A: Found. Crystallogr., 1984, 40(2), 95-99. https://doi.org/10.1107/s0108767384000210

    Article  Google Scholar 

  84. H. Brandt. Über eine Verallgemeinerung des Gruppenbegriffes. Math. Ann., 1927, 96(1), 360-366. https://doi.org/10.1007/bf01209171

    Article  Google Scholar 

  85. K. Fichtner. Non-space-group symmetry in crystallography. Comput. Math. Appl., 1986, 12(3/4), 751-762. https://doi.org/10.1016/0898-1221(86)90421-9

    Article  Google Scholar 

  86. A. L. Gorodentsev. Algebra dlya studentov-matematikov (Algebra for Students of Mathematics), Part 2. Moscow, Russia: Vysshaya Shkola Ekonomiki, 2015. [In Russian]

  87. K. Dornberger-Schiff. Lektsii po OD-strukturam (Lectures on OD-Structures). Moscow, Russia, 1969. [In Russian]

  88. H. Grell and K. Dornberger-Schiff. Symbols for OD groupoid families referring to OD structures (polytypes) consisting of more than one kind of layer. Acta Crystallogr., Sect. A, 1982, 38(1), 49-54. https://doi.org/10.1107/s0567739482000096

    Article  Google Scholar 

  89. S. V. Krivovichev. Which inorganic structures are the most complex? Angew. Chem., Int. Ed., 2014, 53(3), 654-661. https://doi.org/10.1002/anie.201304374

    Article  CAS  Google Scholar 

  90. S. V. Krivovichev. Structural complexity of minerals: information storage and processing in the mineral world. Mineral. Mag., 2013, 77(3), 275-326. https://doi.org/10.1180/minmag.2013.077.3.05

    Article  CAS  Google Scholar 

  91. S. Ďurovič. Desymmetrization of OD Structures. Krist. Tech., 1979, 14(9), 1047-1053. https://doi.org/10.1002/crat.19790140904

    Article  Google Scholar 

  92. S. Krivovichev. Topological complexity of crystal structures: quantitative approach. Acta Crystallogr., Sect. A: Found. Crystallogr., 2012, 68(3), 393-398. https://doi.org/10.1107/s0108767312012044

    Article  CAS  Google Scholar 

  93. S. V. Krivovichev, V. G. Krivovichev, R. M. Hazen, S. M. Aksenov, M. S. Avdontceva, A. M. Banaru, L. A. Gorelova, R. M. Ismagilova, I. V. Kornyakov, I. V. Kuporev, S. M. Morrison, T. L. Panikorovskii, and G. L. Starova. Structural and chemical complexity of minerals: An update. Mineral. Mag., 2022, 86(2), 183-204. https://doi.org/10.1180/mgm.2022.23

    Article  Google Scholar 

  94. S. V. Krivovichev. Structural complexity and configurational entropy of crystals. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 274-276. https://doi.org/10.1107/s205252061501906x

    Article  CAS  Google Scholar 

  95. R. K. Rastsvetaeva, S. M. Aksenov, I. A. Verin, and I. S. Lykova. Crystal structure of hydrogen-bearing vuonnemite from the Lovozero alkaline massif. Crystallogr. Rep., 2011, 56(3), 407-410. https://doi.org/10.1134/s1063774511030266

    Article  CAS  Google Scholar 

  96. M. Nespolo and K. Bouznari. Modularity of crystal structures: A unifying model for the biopyribole–palysepiole series. Eur. J. Mineral., 2017, 29(3), 369-383. https://doi.org/10.1127/ejm/2017/0029-2632

    Article  CAS  Google Scholar 

  97. M. Nespolo and M. I. Aroyo. The modular structure of pyroxenes. Eur. J. Mineral., 2016, 28(1), 189-203. https://doi.org/10.1127/ejm/2015/0027-2492

    Article  CAS  Google Scholar 

  98. N. Morimoto. Nomenclature of pyroxenes. Mineral. Petrol., 1988, 39(1), 55-76. https://doi.org/10.1007/bf01226262

    Article  Google Scholar 

  99. D. T. Griffen. Silicate Crystal Chemistry. Oxford University Press, 1992.

  100. P. Sedlacek, A. Zedler, and K. Reinecke. OD interpretation of pyroxenes. Krist. Tech., 1979, 14(9), 1055-1062. https://doi.org/10.1002/crat.19790140905

    Article  CAS  Google Scholar 

  101. L. Gufeng, L. Chengyi, and X. Huifang. The possible topologic structure types of orthopyroxene with space group P21ca. Chin. J. Geochem., 1990, 9(3), 275-283. https://doi.org/10.1007/bf02837691

    Article  Google Scholar 

  102. Y. Ohashi. Polysynthetically-twinned structures of enstatite and wollastonite. Phys. Chem. Miner., 1984, 10(5), 217-229. https://doi.org/10.1007/bf00309314

    Article  CAS  Google Scholar 

  103. M. Nespolo, G. Ferraris, S. Ďurovič, and Y. Takéuchi. Twins vs. modular crystal structures. Z. Kristallogr. - Cryst. Mater., 2004, 219(12), 773-778. https://doi.org/10.1524/zkri.219.12.773.55868

    Article  CAS  Google Scholar 

  104. K. Dornberger-Schiff. On the nomenclature of the 80 plane groups in three dimensions. Acta Crystallogr., 1959, 12(2), 173-173. https://doi.org/10.1107/s0365110x59000482

    Article  Google Scholar 

  105. J. J. Papike, C. T. Prewitt, S. Sueno, and M. Cameron. Pyroxenes: comparisons of real and ideal structural topologies. Z. Kristallogr. - Cryst. Mater., 1973, 138(1-4), 254-273. https://doi.org/10.1524/zkri.1973.138.1-4.254

    Article  CAS  Google Scholar 

  106. J. B. Thompson Jr. An introduction to the mineralogy and petrology of the biopyriboles. In: Amphiboles and Other Hydrous Pyriboles / Eds. D.R. Veblen, P.H. Ribbe: Reviews in Mineralogy & Geochemistry, Vol. 9A. De Gruyter, 1981, 141-188. https://doi.org/10.1515/9781501508219-007

    Chapter  Google Scholar 

  107. M. Suárez and E. García-Romero. Sepiolite–palygorskite: A continuous polysomatic series. Clays Clay Miner., 2013, 61(5), 461-472. https://doi.org/10.1346/ccmn.2013.0610505

    Article  Google Scholar 

  108. G. Ferraris and A. Gula. Polysomatic aspects of microporous minerals - heterophyllosilicates, palysepioles and rhodesite-related structures. In: Micro- and Mesoporous Mineral Phases / Eds. G. Ferraris, S. Merlino. De Gruyter, 2005, 69-104. https://doi.org/10.1515/9781501509513-003

    Chapter  Google Scholar 

  109. K. N. Bozhilov. Structures and microstructures of non-classical pyriboles. In: Minerals at the Nanoscale / Eds. F. N. Garcia and K. J. T. Livi: EMU Notes in Mineralogy, Vol. 14. Europian Mineralogical Union, 2013, 109-152.

  110. D. R. Veblen. Non-classical pyriboles and polysomatic reactions in biopyriboles. In: Amphiboles and Other Hydrous Pyriboles / Eds. D. R. Veblen and P. H. Ribbe: Reviews in Mineralogy & Geochemistry, Vol. 9A. De Gruyter, 1981, 189-236. https://doi.org/10.1515/9781501508219-008

    Chapter  Google Scholar 

  111. G. Ferraris. Polysomatism as a tool for correlating properties and structure. In: Modular Aspects of Minerals / Ed. S. Merlino: EMU Notes in Mineralogy, Vol. 1. European Mineralogical Union, 1997, 275.

  112. D. M. Thompson. Hematuria associated with soda pop drinking. JAMA, J. Am. Med. Assoc., 1978, 239(3), 193. https://doi.org/10.1001/jama.1978.03280300025011

    Article  CAS  PubMed  Google Scholar 

  113. T. Zoltai. Amphibole asbestos mineralogy. In: Amphiboles and Other Hydrous Pyriboles / Eds. D. R. Veblen and P. H. Ribbe: Reviews in Mineralogy & Geochemistry, Vol. 9A. De Gruyter, 1981, 237-278. https://doi.org/10.1515/9781501508219-009

    Chapter  Google Scholar 

  114. D. D. V. Leung and P. E. DePolo. TotBlocks: Exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules. Eur. J. Mineral., 2022, 34(6), 523-538. https://doi.org/10.5194/ejm-34-523-2022

    Article  CAS  Google Scholar 

  115. F. C. Hawthorne. Bond topology and structure-generating functions: Graph-theoretic prediction of chemical composition and structure in polysomatic T–O–T (biopyribole) and H–O–H structures. Mineral. Mag., 2012, 76(5), 1053-1080. https://doi.org/10.1180/minmag.2012.076.5.13

    Article  CAS  Google Scholar 

  116. T. Yong, C. R. Bina, G. J. Finkelstein, D. Zhang, and P. Dera. A new high-pressure phase transition in natural gedrite. Crystals, 2019, 9(10), 521. https://doi.org/10.3390/cryst9100521

    Article  CAS  Google Scholar 

  117. F. C. Hawthorne, R. Oberti, G. E. Harlow, W. V. Maresch, R. F. Martin, J. C. Schumacher, and M. D. Welch. Nomenclature of the amphibole supergroup. Am. Mineral., 2012, 97(11/12), 2031-2048. https://doi.org/10.2138/am.2012.4276

    Article  CAS  Google Scholar 

  118. E. Cannilo, F. Mazzi, G. Rossi. The crystal structure of neptunite. Acta Crystallogr., 1966, 21(2), 200-208. https://doi.org/10.1107/s0365110x66002627

    Article  Google Scholar 

  119. O.V. Karimova, O.V. Yakubovich, A.E. Zadov, A.G. Ivanova, V.S. Urusov. Crystal structure of magnesioneptunite. Crystallogr. Rep., 2012, 57(4), 505-513. https://doi.org/10.1134/s1063774512020101

    Article  CAS  Google Scholar 

  120. A.E. Zadov, V.M. Gazeev, O.V. Karimova, N.N. Pertsev, I.V. Pekov, E.V. Galuskin, I.O. Galuskina, A.G. Gurbanov, D.I. Belakovsky, S.E. Borisovsky, P.M. Kartashov, A.G. Ivanova, O.V. Yakubovich. Magnesioneptunite, KNa2Li(Mg,Fe)2Ti2Si8O24, a new mineral species of the neptunite group. Geol. Ore Deposite, 2011, 53(8), 775-782. https://doi.org/10.1134/s1075701511080186

    Article  Google Scholar 

  121. A. A. Zolotarev, S. V. Krivovichev, and V. N. Yakovenchuk. Refinement of the mangan-neptunite crystal structure. Geol. Ore Deposite, 2007, 49(8), 835-838. https://doi.org/10.1134/s1075701507080181

    Article  Google Scholar 

  122. S. Matsubara, R. Miyawaki, M. Kurosawa, and Y. Suzuki. Watatsumiite, KNa2LiMn2V2Si8O24, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. J. Mineral. Petrol. Sci., 2003, 98(4), 142-150. https://doi.org/10.2465/jmps.98.142

    Article  CAS  Google Scholar 

  123. M. Kunz, T. Armbruster, G. Lager, A. Schultz, R. Goyette, W. Lottermoser, and G. Amthauer. Fe, Ti ordering and octahedral distortions in acentric neptunite: Temperature dependent X-ray and neutron structure refinements and Mössbauer spectroscopy. Phys. Chem. Miner., 1991, 18(3). https://doi.org/10.1007/bf00234004

    Article  Google Scholar 

  124. N. V. Belov. Ocherki po strukturnoi mineralogii (Essays on Structural Mineralogy). Moscow, Russia: Nedra, 1976. [In Russian]

  125. M. M. Smart, C. D. McMillen, K. Ivey, and J. W. Kolis. Chemistry of metal silicates and germanates: The largest metal polygermanate, K11Mn21Ge32O86(OH)9(H2O), with a 76 Å periodic lattice. Inorg. Chem., 2020, 59(23), 16804-16808. https://doi.org/10.1021/acs.inorgchem.0c02303

    Article  CAS  PubMed  Google Scholar 

  126. F. C. Hawthorne, Y. A. Uvarova, and E. Sokolova. A structure hierarchy for silicate minerals: Sheet silicates. Mineral. Mag., 2019, 83(1), 3-55. https://doi.org/10.1180/mgm.2018.152

    Article  CAS  Google Scholar 

  127. F. C. Hawthorne. Generating functions for stoichiometry and structure of single- and double-layer sheet-silicates. Mineral. Mag., 2015, 79(7), 1675-1709. https://doi.org/10.1180/minmag.2015.079.7.17

    Article  Google Scholar 

  128. R. Miyawaki, F. Hatert, M. Pasero, and S. J. Mills. sification (CNMNC) - Newsletter 70. Eur. J. Mineral., 2022, 34(6), 591-601. https://doi.org/10.5194/ejm-34-591-2022

    Article  CAS  Google Scholar 

  129. J. D. Grice. The crystal structure of silinaite, NaLiSi2O5·2H2O: A monophyllosilicate. Can. Mineral., 1991, 29, 363-367.

  130. J. E. Post and P. J. Heaney. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite. Am. Mineral., 2008, 93(4), 667-675. https://doi.org/10.2138/am.2008.2590

    Article  CAS  Google Scholar 

  131. F. C. Hawthorne, Y. A. Abdu, K. T. Tait, and M. E. Back. The crystal structure of yofortierite. Can. Mineral., 2013, 51(2), 243-251. https://doi.org/10.3749/canmin.51.2.243

    Article  CAS  Google Scholar 

  132. F. Cámara, L. A. J. Garvie, B. Devouard, T. L. Groy, and P. R. Buseck. The structure of Mn-rich tuperssuatsiaite: A palygorskite-related mineral. Am. Mineral., 2002, 87(10), 1458-1463. https://doi.org/10.2138/am-2002-1023

    Article  Google Scholar 

  133. N. V. Chukanov, S. N. Britvin, G. Blass, D. I. Belakovskiy, K. V. Van. Windhoekite, Ca2Fe3+3–x(Si8O20)(OH)410H2O, a new palygorskite-group mineral from the Aris phonolite, Namibia. Eur. J. Mineral., 2012, 24(1), 171-179. https://doi.org/10.1127/0935-1221/2011/0023-2161

    Article  CAS  Google Scholar 

  134. J. J. Pluth, J. V. Smith, D. Y. Pushcharovsky, E. I. Semenov, A. Bram, C. Riekel, H.-P. Weber, and R. W. Broach. Third-generation synchrotron X-ray diffraction of 6-f06dm crystal of raite, f0bb Na3Mn3Ti0.25Si8O20(OH)2·10H2O, opens up new chemistry and physics of low-temperature minerals. Proc. Natl. Acad. Sci., 1997, 94(23), 12263-12267. https://doi.org/10.1073/pnas.94.23.12263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. D. D. Leung and A. M. McDonald. Windmountainite, □Fe3+2Mg22Si8O20(OH)2(H2O)4·4H2O, a new modulated, layered Fe3+–Mg-silicate-hydrate from Wind Mountain, New Mexico: Characterization and origin, with comments on the classification of palygorskite-group minerals. Can. Mineral., 2020, 58(4), 477-509. https://doi.org/10.3749/canmin.1900063

    Article  CAS  Google Scholar 

  136. M. S. del Rio, E. Garcia-Romero, M. Suarez, I. da Silva, L. Fuentes-Montero, and G. Martinez-Criado. lity in sepiolite: Diffraction studies. Am. Mineral., 2011, 96(10), 1443-1454. https://doi.org/10.2138/am.2011.3761

    Article  CAS  Google Scholar 

  137. G. Xiangping, X. Xiande, W. Xiangbin, Z. Guchang, L. Jianqing, H. Kenich, and H. Jiwu. Ferrisepiolite: A new mineral from Saishitang copper skarn deposit in Xinghai County, Qinghai Province, China. Eur. J. Mineral., 2013, 25(2), 177-186. https://doi.org/10.1127/0935-1221/2013/0025-2262

    Article  CAS  Google Scholar 

  138. S. Kadir, H. Bas, and Z. Karakas. strine environment, Mihaliccik Eskisehir, Turkey. Can. Mineral., 2002, 40(4), 1091-1102. https://doi.org/10.2113/gscanmin.40.4.1091

    Article  CAS  Google Scholar 

  139. E. Tauler, J. A. Proenza, S. Galí, J. F. Lewis, M. Labrador, E. García-Romero, M. Suarez, F. Longo, and G. Bloise. Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner., 2009, 44(4), 435-454. https://doi.org/10.1180/claymin.2009.044.4.435

    Article  CAS  Google Scholar 

  140. G. Ferraris, A. P. Khomyakov, E. Belluso, and S. V. Soboleva. Kalifersite, a new alkaline silicate from Kola Peninsula (Russia) based on a palygorskite-sepiolite polysomatic series. Eur. J. Mineral., 1998, 10(5), 865-874. https://doi.org/10.1127/ejm/10/5/0865

    Article  CAS  Google Scholar 

  141. R. M. Danisi, T. Armbruster, and B. Lazic. In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study. J. Solid State Chem., 2013, 197, 508-516. https://doi.org/10.1016/j.jssc.2012.09.002

    Article  CAS  Google Scholar 

  142. A. R. Kampf, G. R. Rossman, and R. M. Housley. Plumbophyllite, a new species from the Blue Bell claims near Baker, San Bernardino County, California. Am. Mineral., 2009, 94(8/9), 1198-1204. https://doi.org/10.2138/am.2009.3156

    Article  CAS  Google Scholar 

  143. E. L. Belokoneva, O. V. Reutova, O. V. Dimitrova, and A. S. Volkov. Germanosilicate Cs2In2[(Si2.1Ge0.9)2O15](OH)2·H2O with a new corrugated tetrahedral layer: topological symmetry-based prediction of anionic radicals. Crystallogr. Rep., 2020, 65(4), 566-572. https://doi.org/10.1134/s1063774520040033

    Article  CAS  Google Scholar 

  144. F. Liebau. Structural Chemistry of Silicates. Berlin, Heidelberg: Springer, 1985. https://doi.org/10.1007/978-3-642-50076-3

    Book  Google Scholar 

  145. H. T. Evans Jr. and M. E. Mrose The crystal chemistry of the hydrous copper silicates, shattuckite and plancheite. Am. Mineral., 1977, 62, 491.

  146. H. Yang, R. T. Downs, S. H. Evans, and W. W. Pinch. Lavinskyite, K(LiCu)Cu6(Si4O11)2(OH)4, isotypic with plancheite, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. Am. Mineral., 2014, 99(2/3), 525-530. https://doi.org/10.2138/am.2014.4601

    Article  Google Scholar 

  147. U. Kolitsch, S. Merlino, D. Belmonte, C. Carbone, R. Cabella, G. Lucchetti, and M. E. Ciriotti. Lavinskyite-1M, K(LiCu)Cu6(Si4O11)2(OH)4, the monoclinic MDO equivalent of lavinskyite-2O (formerly lavinskyite), from the Cerchiara manganese mine, Liguria, Italy. Eur. J. Mineral., 2018, 30(4), 811-820. https://doi.org/10.1127/ejm/2018/0030-2731

    Article  CAS  Google Scholar 

  148. R. K. Rastsvetaeva, O. Y. Rekhlova, and A. P. Khomyakov. Crystal structure of a new natural Na, K, Fe silicate. Crystallogr. Rep., 1991, 36, 500-503.

  149. A. P. Khomyakov, F. Camara, E. Sokolova, Y. Abdu, and F. C. Hawthorne. Paraershovite, Na3K3Fe3+2(Si4O10OH)2(OH)2(H2O)4, a new mineral species from the Khibina alkaline massif, Kola Peninsula, Russia: Description and crystal structure. Can. Mineral., 2010, 48(2), 279-290. https://doi.org/10.3749/canmin.48.2.279

    Article  CAS  Google Scholar 

  150. M. F. Brigatti, D. Malferrari, A. Laurora, and C. Elmi. Structure and mineralogy of layer silicates: Recent perspectives and new trends. In: Layered Mineral Structures and their Application in Advanced Technologiestain and Ireland, 2011, 1.

  151. B. B. Zvyagin. Electron-Diffraction Analysis of Clay Mineral Structures. Boston, MA, USA: Springer US, 1967. https://doi.org/10.1007/978-1-4615-8612-8

    Book  Google Scholar 

  152. G. Capitani and M. Mellini. The modulated crystal structure of antigorite: The m = 17 polysome. Am. Mineral., 2004, 89(1), 147-158. https://doi.org/10.2138/am-2004-0117

    Article  CAS  Google Scholar 

  153. I. Dódony, M. Pósfai, and P. R. Buseck. Revised structure models for antigorite: An HRTEM study. Am. Mineral., 2002, 87(10), 1443-1457. https://doi.org/10.2138/am-2002-1022

    Article  Google Scholar 

  154. G. C. Capitani and M. Mellini. High-resolution transmission electron microscopy (HRTEM) investigation of antigorite polysomes (m = 15 to 18). Am. Mineral., 2007, 92(1), 64-71. https://doi.org/10.2138/am.2007.2188

    Article  CAS  Google Scholar 

  155. G. Ferraris, M. Mellini, and S. Merlino. Polysomatism and the classification of minerals. Rend. Soc. Ital. Mineral. Petrol., 1986, 41, 181.

  156. G. Capitani. HRTEM evidence for 8-reversals in the m = 17 antigorite polysome. Am. Mineral., 2005, 90(5/6), 991-999. https://doi.org/10.2138/am.2005.1634

    Article  CAS  Google Scholar 

  157. E. Belluso and G. Ferraris. New data on balangeroite and carlosturanite from alpine serpentinites. Eur. J. Mineral., 1991, 3(3), 559-566. https://doi.org/10.1127/ejm/3/3/0559

    Article  CAS  Google Scholar 

  158. M. Nespolo and Ď. Slavomil. Crystallographic basis of polytypism and twinning in micas. In: Micas / Eds. A. Mottana, F. P. Sassi, J. B. Thompson, and S. Guggenheim: Reviews in Mineralogy & Geochemistry, Vol. 46. De Gruyter, 2002, 155-280. https://doi.org/10.1515/9781501509070-009

    Chapter  Google Scholar 

  159. M. Nespolo. Perturbative theory of mica polytypism. Role of the M2 layer in the formation of inhomogeneous polytypes. Clays Clay Miner., 2001, 49(1), 1-23. https://doi.org/10.1346/ccmn.2001.0490101

    Article  CAS  Google Scholar 

  160. M. Rieder, G. Cavazzini, Y. S. D′yakonov, V. A. Frank-Kamenetskii, G. Gottardi, S. Guggenheim, P. V. Koval′, G. Müller, A. M. R. Neiva, E. W. Radoslovich, J.-L. Robert, F. P. Sassi, H. Takeda, Z. Weiss, and D. R. Wones. Nomenclature of the micas. Mineral. Mag., 1999, 63(2), 267-279. https://doi.org/10.1180/minmag.1999.063.2.13

    Article  CAS  Google Scholar 

  161. M. Nespolo and S. Durovic. Crystallographic basis of polytypism and twinning in micas. Rev. Mineral. Geochem., 2002, 46(1), 155-279. https://doi.org/10.2138/rmg.2002.46.04

    Article  CAS  Google Scholar 

  162. S. Ďurovič. Polytypism of micas. II. Classification and abundance of MDO polytypes. Clays Clay Miner., 1984, 32(6), 464-474. https://doi.org/10.1346/ccmn.1984.0320604

    Article  Google Scholar 

  163. G. Ferraris and G. Ivaldi. Structural features of micas. Rev. Mineral. Geochem., 2002, 46(1), 117-153. https://doi.org/10.2138/rmg.2002.46.03

    Article  CAS  Google Scholar 

  164. N. V. Chukanov, A. A. Mukhanova, R. K. Rastsvetaeva, D. I. Belakovsky, S. Möckel, O. V. Karimova, S. N. Britvin, and S. V. Krivovichev. Oxyphlogopite K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2: A new mineral species of the mica group. Geol. Ore Deposite, 2011, 53(7), 583-590. https://doi.org/10.1134/s1075701511070063

    Article  Google Scholar 

  165. N. V. Chukanov, S. M. Aksenov, A. V. Kasatkin, R. Škoda, F. Nestola, L. Nodari, A. D. Ryanskaya, and R. K. Rastsvetaeva. 3T polytype of an iron-rich oxyphlogopite from the Bartoy volcanic field, Transbaikalia: Mössbauer, infrared, Raman spectroscopy, and crystal structure. Phys. Chem. Miner., 2019, 46(10), 899-908. https://doi.org/10.1007/s00269-019-01049-7

    Article  CAS  Google Scholar 

  166. N. V. Chukanov, E. Jonsson, S. M. Aksenov, S. N. Britvin, R. K. Rastsvetaeva, D. I. Belakovskiy, and K. V. Van. Roymillerite, Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, a new mineral: mineralogical characterization and crystal chemistry. Phys. Chem. Miner., 2017, 44, 685-699. https://doi.org/10.1007/s00269-017-0893-2

    Article  CAS  Google Scholar 

  167. N. V. Chukanov, O. V. Yakubovich, I. V. Pekov, D. I. Belakovsky, and W. Massa. Britvinite, Pb15Mg9(Si10O28)(BO3)4(CO3)2(OH)12O2, a new mineral species from Långban, Sweden. Geol. Ore Deposite, 2008, 50(8), 713-719. https://doi.org/10.1134/s1075701508080072

    Article  Google Scholar 

  168. S. V. Krivovichev, O. Mentré, O. I. Siidra, M. Colmont, and S. K. Filatov. Anion-centered tetrahedra in inorganic compounds. Chem. Rev., 2013, 113(8), 6459-6535. https://doi.org/10.1021/cr3004696

    Article  CAS  PubMed  Google Scholar 

  169. S. V. Krivovichev and P. C. Burns. Crystal chemistry of basic lead carbonates. II. Crystal structure of synthetic ′plumbonacrite′. Mineral. Mag., 2000, 64(6), 1069-1075. https://doi.org/10.1180/002646100549887

    Article  Google Scholar 

  170. U. Kolitsch, S. Merlino, and D. Holtstam. Molybdophyllite: Crystal chemistry, crystal structure, OD character and modular relationships with britvinite. Mineral. Mag., 2012, 76(3), 493-516. https://doi.org/10.1180/minmag.2012.076.3.04

    Article  CAS  Google Scholar 

  171. E. Sokolova. From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. Can. Mineral., 2006, 44(6), 1273-1330. https://doi.org/10.2113/gscanmin.44.6.1273

    Article  CAS  Google Scholar 

  172. E. L. Belokoneva, A. P. Topnikova, and S. M. Aksenov. Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: Structure prediction. Crystallogr. Rep., 2015, 60(1), 1-15. https://doi.org/10.1134/s1063774515010058

    Article  CAS  Google Scholar 

  173. R. K. Rastsvetaeva, N. V. Chukanov, and S. M. Aksenov. The crystal chemistry of lamprophyllite-related minerals: A review. Eur. J. Mineral., 2016, 28(5), 915-930. https://doi.org/10.1127/ejm/2016/0028-2560

    Article  CAS  Google Scholar 

  174. S. M. Aksenov, A. D. Ryanskaya, Y. V. Shchapova, N. V. Chukanov, N. V. Vladykin, S. L. Votyakov, and R. K. Rastsvetaeva. Crystal chemistry of lamprophyllite-group minerals from the Murun alkaline complex (Russia) and pegmatites of Rocky Boy and Gordon Butte (USA): single crystal X-ray diffraction and Raman spectroscopy study. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2021, 77(2), 287-298. https://doi.org/10.1107/s2052520621000354

    Article  CAS  Google Scholar 

  175. E. Sokolova and F. Cámara. The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineral. Mag., 2017, 81(6), 1457-1484. https://doi.org/10.1180/minmag.2017.081.010

    Article  CAS  Google Scholar 

  176. E. Sokolova, F. C. Hawthorne, F. Cámara, and M. E. Back. The ericssonite group of Fe3+ disilicate minerals. Can. Mineral., 2018, 56(1), 95-99. https://doi.org/10.3749/canmin.1700064

    Article  CAS  Google Scholar 

  177. J. Lima-de-Faria, E. Hellner, F. Liebau, E. Makovicky, and E. Parthé. Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Crystallogr., Sect. A: Found. tallogr., 1990, 46(1), 1-11. https://doi.org/10.1107/s0108767389008834

    Article  Google Scholar 

  178. G. de la Flor, D. Orobengoa, E. Tasci, J. M. Perez-Mato, and M. I. Aroyo. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr., 2016, 49(2), 653-664. https://doi.org/10.1107/s1600576716002569

    Article  CAS  Google Scholar 

  179. C. Capillas, J. M. Perez-Mato, and M. I. Aroyo. Maximal symmetry transition paths for reconstructive phase transitions. J. Phys. Condens. Matter, 2007, 19(27), 275203. https://doi.org/10.1088/0953-8984/19/27/275203

    Article  CAS  Google Scholar 

  180. D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato. AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server. J. Appl. Crystallogr., 2009, 42(5), 820-833. https://doi.org/10.1107/s0021889809028064

    Article  CAS  Google Scholar 

  181. R. K. Rastsvetaeva, S. M. Aksenov, and N. V. Chukanov. Crystal structure of Schüllerite, a new mineral of the heterophyllosilicate family. Dokl. Chem., 2011, 437(2), 90-94. https://doi.org/10.1134/s0012500811040045

    Article  CAS  Google Scholar 

  182. R. K. Rastsvetaeva, S. M. Aksenov, N. V. Chukanov, I. S. Lykova, and I. A. Verin. Iron-rich schüllerite from Kahlenberg (Eifel, Germany): Crystal structure and relation to lamprophyllite-group minerals. Crystallogr. Rep., 2014, 59(6), 867-873. https://doi.org/10.1134/s1063774514060248

    Article  CAS  Google Scholar 

  183. E. Sokolova and F. Cámara. From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. Can. Mineral., 2013, 51(6), 861-891. https://doi.org/10.3749/canmin.51.6.861

    Article  CAS  Google Scholar 

  184. G. Ferraris. Polysomatic aspects of microporous minerals - heterophyllosilicates, palysepioles and rhodesite-related structures. Rev. Mineral. Geochem., 2005, 57(1), 69-104. https://doi.org/10.2138/rmg.2005.57.3

    Article  CAS  Google Scholar 

  185. E. Sokolova and F. Cámara. From structure topology to chemical composition. XXI. Understanding the crystal chemistry of barium in TS-block minerals. Can. Mineral., 2016, 54(1), 79-95. https://doi.org/10.3749/canmin.1500074

    Article  CAS  Google Scholar 

  186. S. V. Krivovichev. Minerals with antiperovskite structure: a review. Z. Kristallogr. - Cryst. Mater., 2008, 223(1/2), 109-113. https://doi.org/10.1524/zkri.2008.0008

    Article  CAS  Google Scholar 

  187. G. Ferraris, A. Bloise, and M. Cadoni. Layered titanosilicates - A review and some results on the hydrothermal synthesis of bafertisite. Microporous Mesoporous Mater., 2008, 107(1/2), 108-112. https://doi.org/10.1016/j.micromeso.2007.02.036

    Article  CAS  Google Scholar 

  188. Z. Lin, F. A. A. Paz, and J. Rocha. Layered titanosilicates. In: Layered Mineral Structures and Their Application in Advanced Technologies / Eds. M.F. Brigatti, A. Mottana: EMU Notes in Mineralogy, Vol. 11. Mineralogical Society of Great Britain and Ireland, 2011, 123.

  189. N. F. Chelishchev. Ionoobmennye svoistva astrofillitov v sverkhkriticheskikh usloviyakh (Ion exchange properties of astrophyllites under supercritical conditions). Geokhimiya, 1972, (7), 856-860. [In Russian]

  190. N. F. Chelishchev. Ionoobmennye svoistva mineralov (Ion Exchange Properties of Minerals). Moscow, Russia: Nauka, 1973. [In Russian]

  191. S. M. Aksenov, N. A. Yamnova, N. V. Chukanov, N. A. Kabanova, E. A. Kobeleva, D. V. Deyneko, and S. V. Krivovichev. Theoretical analysis of cation- migration paths in microporous heterophyllosilicates with astrophyllite and veblenite type structures. J. Struct. Chem., 2022, 63(2), 293-301. https://doi.org/10.1134/s002247662202010x

    Article  CAS  Google Scholar 

  192. N. V. Chukanov, S. M. Aksenov, I. V. Pekov, N. A. Chervonnaya, D. A. Varlamov, V. N. Ermolaeva, and S. N. Britvin. Ion exchange properties of natural titanium silicate caryochroite (Na,Sr)3{(Fe,Mg)2+10(OH)6[TiO(Si6O17)(OH)0.5]2}·8H2O with a 1D system of parallel wide channels: Experimental study and theoretical analysis of the topochemical mechanisms. Microporous Mesoporous Mater., 2021, 312, 110776. https://doi.org/10.1016/j.micromeso.2020.110776

    Article  CAS  Google Scholar 

  193. L. B. McCusker, F. Liebau, and G. Engelhardt. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous Mesoporous Mater., 2003, 58(1), 3-13. https://doi.org/10.1016/s1387-1811(02)00545-0

    Article  CAS  Google Scholar 

  194. L. B. Ebert. Intercalation compounds of graphite. Annu. Rev. Mater. Sci., 1976, 6(1), 181-211. https://doi.org/10.1146/annurev.ms.06.080176.001145

    Article  CAS  Google Scholar 

  195. W. C. Forsman, T. Dziemianowicz, K. Leong, and D. Carl. Graphite intercalation chemistry: An interpretive review. Synth. Met., 1983, 5(2), 77-100. https://doi.org/10.1016/0379-6779(83)90123-6

    Article  CAS  Google Scholar 

  196. M. S. Dresselhaus and G. Dresselhaus. Intercalation compounds of graphite. Adv. Phys., 2002, 51(1), 1-186. https://doi.org/10.1080/00018730110113644

    Article  CAS  Google Scholar 

  197. F. Hulliger. Structural Chemistry of Layer-Type Phases / Ed. F. Lévy. Dordrecht, Netherlands: Springer, 1976. https://doi.org/10.1007/978-94-010-1146-4

    Book  Google Scholar 

  198. Intercalated Layered Materials / Ed. F. Lévy: Physics and Chemistry of Materials with Layered Structures, Vol. 6. Dordrecht, Netherlands: Springer, 1979.

  199. X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, and M. Pumera. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev., 2015, 115(21), 11941-11966. https://doi.org/10.1021/acs.chemrev.5b00287

    Article  CAS  PubMed  Google Scholar 

  200. D. Schiferl and C. S. Barrett. The crystal structure of arsenic at 4.2, 78 and 299 K. J. Appl. Crystallogr., 1969, 2(1), 30-36. https://doi.org/10.1107/s0021889869006443

    Article  CAS  Google Scholar 

  201. C. S. Barrett, P. Cucka, and K. Haefner. The crystal structure of antimony at 4.2, 78 and 298 K. Acta Crystallogr., 1963, 16(6), 451-453. https://doi.org/10.1107/s0365110x63001262

    Article  CAS  Google Scholar 

  202. P. Cucka and C. S. Barrett. The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallogr., 1962, 15(9), 865-872. https://doi.org/10.1107/s0365110x62002297

    Article  CAS  Google Scholar 

  203. P. Boher, P. Garnier, J. R. Gavarri, and A. W. Hewat. Monoxyde quadratique PbOα(I): Description de la transition structurale ferroe´lastique. J. Solid State Chem., 1985, 57(3), 343-350. https://doi.org/10.1016/0022-4596(85)90197-5

    Article  CAS  Google Scholar 

  204. J. Pannetier and G. Denes. Tin(II) oxide: structure refinement and thermal expansion. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1980, 36(11), 2763-2765. https://doi.org/10.1107/s0567740880009934

    Article  Google Scholar 

  205. P. J. Wheatley. Structure of lithium methoxide. Nature, 1960, 185(4714), 681-682. https://doi.org/10.1038/185681b0

    Article  CAS  Google Scholar 

  206. M. Beske, L. Tapmeyer, and M. U. Schmidt. Crystal structure of sodium ethoxide (C2H5ONa), unravelled after 180 years. Chem. Commun., 2020, 56(24), 3520-3523. https://doi.org/10.1039/c9cc08907a

    Article  CAS  Google Scholar 

  207. S. L. Mair. The electron distribution of the hydroxide ion in lithium hydroxide. Acta Crystallogr., Sect. A, 1978, 34(4), 542-547. https://doi.org/10.1107/s0567739478001151

    Article  Google Scholar 

  208. D. O. Charkin and X. N. Zolotova. A crystallographic re-investigation of Cu2Sb-related binary, ternary, and quarternary structures: How many structure types can exist upon the same topology of a unit cell? Crystallogr. Rev., 2007, 13(3), 201-245. https://doi.org/10.1080/08893110701618993

    Article  CAS  Google Scholar 

  209. D. O. Charkin. Modular approach as applied to the description, prediction, and targeted synthesis of bismuth oxohalides with layered structures. Russ. J. Inorg. Chem., 2008, 53(13), 1977-1996. https://doi.org/10.1134/s0036023608130019

    Article  Google Scholar 

  210. I. Zimmermann and M. Johnsson. A synthetic route toward layered materials: Introducing stereochemically active lone-pairs into transition metal oxohalides. Cryst. Growth Des., 2014, 14(10), 5252-5259. https://doi.org/10.1021/cg5010374

    Article  CAS  Google Scholar 

  211. Z. Mayerová, M. Johnsson, and S. Lidin. Lone-pair interfaces that divide inorganic materials into ionic and covalent parts. Angew. Chem., Int. Ed., 2006, 45(34), 5602-5606. https://doi.org/10.1002/anie.200600861

    Article  CAS  Google Scholar 

  212. H. Effenberger. Verfeinerung der Kristallstruktur des monoklinen Dikupfer(II)-trihydroxi-nitrates Cu2(NO3)(OH)3. Z. Kristallogr., 1983, 165(1-4), 127-135. https://doi.org/10.1524/zkri.1983.165.1-4.127

    Article  CAS  Google Scholar 

  213. F. C. Hawthorne. Refinement of the crystal structure of botallackite. Mineral. Mag., 1985, 49(350), 87-89. https://doi.org/10.1180/minmag.1985.049.350.12

    Article  CAS  Google Scholar 

  214. M. R. Markovski, O. I. Siidra, D. O. Charkin, E. V. Nazarchuk, and V. Y. Grishaev. Molecular inorganic polymers: synthesis and crystal structures of KCl72H2SeO3 and CsCl7H2SeO3. Z. Kristallogr. - Cryst. Mater., 2020, 235(11), 553-557. https://doi.org/10.1515/zkri-2020-0062

    Article  CAS  Google Scholar 

  215. S. Seong, K. A. Yee, and T. A. Albright. Interlayer communication in some two-dimensional materials. J. Am. Chem. Soc., 1993, 115(5), 1981-1987. https://doi.org/10.1021/ja00058a052

    Article  CAS  Google Scholar 

  216. B. Aurivillius. Intergrowth compounds between members of the bismuth titanate family and structures of the LiBi3O4Cl2 type - an architectural approach. Chem. Scr., 1984, 23(3), 143-156.

  217. J. F. Ackerman. The structures of Bi3PbWO8Cl and Bi4NbO8Cl and the evolution of the bipox structure series. J. Solid State Chem., 1986, 62(1), 92-104. https://doi.org/10.1016/0022-4596(86)90220-3

    Article  CAS  Google Scholar 

  218. E. V. Antipov and A. M. Abakumov. Strukturnyi dizain sverkhprovodnikov na osnove slozhnykh oksidov medi (Structural design of superconductors based on complex copper oxides). Usp. Fiz. Nauk, 2008, 178(2), 190. https://doi.org/10.3367/ufnr.0178.200802h.0190 [In Russian]

    Article  Google Scholar 

  219. C. N. R. Rao and A. K. Ganguli. Structure–property relationship in superconducting cuprates. Chem. Soc. Rev., 1995, 24(1), 1-7. https://doi.org/10.1039/cs9952400001

    Article  CAS  Google Scholar 

  220. T. Sivakumar, R. Seshadri, and J. Gopalakrishnan. Bridging the Ruddlesden–Popper and the Aurivillius phases: Synthesis and structure of a novel series of layered perovskite oxides, (BiO)LnTiO4 (Ln = La, Nd, Sm). JAm. Chem. Soc., 2001, 123(46), 11496-11497. https://doi.org/10.1021/ja011941u

    Article  CAS  PubMed  Google Scholar 

  221. N. C. Hyatt, J. A. Hriljac, and T. P. Comyn. Cation disorder in Bi2Ln2Ti3O12 Aurivillius phases (Ln = La, Pr, Nd and Sm). Mater. Res. Bull., 2003, 38(5), 837-846. https://doi.org/10.1016/s0025-5408(03)00032-1

    Article  CAS  Google Scholar 

  222. T. Sivakumar and J. Gopalakrishnan. Transformation of Dion–Jacobson phase to Aurivillius phase: Synthesis of (PbBiO2)MNb2O7 (M = La, Bi). Mater. Res. Bull., 2005, 40resbull.2004.09.015

    Article  CAS  Google Scholar 

  223. L. Cario, A. Lafond, T. Morvan, H. Kabbour, G. André, and P. Palvadeau. Design and magnetic properties of new compounds containing iron 2D building blocks of the perovskite type. Solid State Sci., 2005, 7(8), 936-944. https://doi.org/10.1016/j.solidstatesciences.2005.04.016

    Article  CAS  Google Scholar 

  224. R. Frankovsky, A. Marchuk, R. Pobel, and D. Johrendt. Synthesis of LaO1–xFxFeAs (x = 0-15) via solid state metathesis reaction. Solid State Commun., 2012, 152(8), 632-634. https://doi.org/10.1016/j.ssc.2011.11.028

    Article  CAS  Google Scholar 

  225. D. O. Charkin, R. O. Grischenko, A. A. Sadybekov, R. J. Goff, and P. Lightfoot. A new approach to synthesis of layered fluorites containing molecular anions: Synthesis of Ln2O2CO3, K(LnO)CO3, and Ln2O2CrO4 via metathesis reactions. Inorg. Chem., 2008, 47(8), 3065-3071. https://doi.org/10.1021/ic701558m

    Article  CAS  PubMed  Google Scholar 

  226. D. O. Charkin, I. V. Plokhikh, A. I. Zadoya, A. N. Zaloga, W. Depmeier, and O. I. Siidra. Structural, thermal, and IR studies of β-[Nd2O2](CrO4), an unexpected analog of a slag phase [Ba2F2](S6+O3S2–). Z. Kristallogr. - Cryst. Mater., 2019, 234(1), 1-8. https://doi.org/10.1515/zkri-2018-2065

    Article  CAS  Google Scholar 

  227. D. O. Charkin, A. S. Karpov, S. M. Kazakov, I. V. Plokhikh, A. I. Zadoya, A. N. Kuznetsov, K. I. Maslakov, A. Y. Teterin, Y. A. Teterin, A. N. Zaloga, and O. I. Siidra. Synthesis, crystal structure, spectroscopic properties, and thermal behavior of rare-earth oxide selenates, Ln2O2SeO4 (Ln = La, Pr, Nd): The new perspectives of solid-state double-exchange synthesis. J. Solid State Chem., 2019, 277, 163-168. https://doi.org/10.1016/j.jssc.2019.06.007

    Article  CAS  Google Scholar 

  228. R. E. Schaak and T. E. Mallouk. Perovskites by design: A toolbox of solid-state reactions. Chem. Mater., 2002, 14(4), 1455-1471. https://doi.org/10.1021/cm010689m

    Article  CAS  Google Scholar 

  229. M. Palazzi, C. Carcaly, and J. Flahaut. Un nouveau conducteur ionique (LaO)AgS. J. Solid State Chem., 1980, 35(2), 150-155. https://doi.org/10.1016/0022-4596(80)90487-9

    Article  CAS  Google Scholar 

  230. N. Zhang, J. Sun, and H. Gong. Transparent p-type semiconductors: Copper-based oxides and oxychalcogenides. Coatings, 2019, 9(2), 137. https://doi.org/10.3390/coatings9020137

    Article  CAS  Google Scholar 

  231. M. Li, N. Wang, S. Zhang, J. Hu, H. Xiao, H. Gong, Z. Liu, L. Qiao, and X. Zu. A review of the properties, synthesis and applications of lanthanum copper oxychalcogenides. J. Phys. D: Appl. Phys., 2022, 55(27), 273002. https://doi.org/10.1088/1361-6463/ac4b71

    Article  Google Scholar 

  232. S. D. N. Luu and P. Vaqueiro. Layered oxychalcogenides: Structural chemistry and thermoelectric properties. JMater., 2016, 2(2), 131-140. https://doi.org/10.1016/j.jmat.2016.04.002

    Article  Google Scholar 

  233. Y. Li, J. Liu, Y.-F. Chen, F.-N. Wang, X.-M. Zhang, X.-J. Wang, J.-C. Li, and C.-L. Wang. Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln = lanthanides and T = Zn, Mn). J. Mater., 2019, 5(1), 51-55. https://doi.org/10.1016/j.jmat.2018.11.006

    Article  Google Scholar 

  234. M. Tegel, D. Bichler, and D. Johrendt. Synthesis, crystal structure and superconductivity of LaNiPO. Solid State Sci., 2008, 10(2), 193-197. https://doi.org/10.1016/j.solidstatesciences.2007.08.016

    Article  CAS  Google Scholar 

  235. Z.-A. Ren and Z.-X. Zhao. Research and prospects of iron-based superconductors. Adv. Mater., 2009, 21(45), 4584-4592. https://doi.org/10.1002/adma.200901049

    Article  CAS  Google Scholar 

  236. S. J. Clarke, P. Adamson, S. J. C. Herkelrath, O. J. Rutt, D. R. Parker, M. J. Pitcher, and C. F. Smura. Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. Inorg. Chem., 2008, 47(19), 8473-8486. https://doi.org/10.1021/ic8009964

    Article  CAS  PubMed  Google Scholar 

  237. T. C. Ozawa and S. M. Kauzlarich. Chemistry of layered ddidates for new superconductors. Sci. Technol. Adv. Mater., 2008, 9(3), 033003. https://doi.org/10.1088/1468-6996/9/3/033003

    Article  CAS  PubMed Central  Google Scholar 

  238. Y. Mizuguchi. Review of superconductivity in BiS2-based layered materials. J. Phys. Chem. Solids, 2015, 84, 34-48. https://doi.org/10.1016/j.jpcs.2014.09.003

    Article  CAS  Google Scholar 

  239. Y. Mizuguchi. Material development and physical properties of BiS2-based layered compounds. J. Phys. Soc. Japan, 2019, 88(4), 041001. https://doi.org/10.7566/jpsj.88.041001

    Article  Google Scholar 

  240. G. A. Smolenskii, V. A. Isupov, and A. I. Agranovskaya. Novaya gruppa segnetoelektrikov (so sloistoi strukturoi) (New group of ferroelectrics (with layered structure)). Fiz. Tver. Tela, 1959, 1, 169. [In Russian]

  241. E. C. Subbarao. Ferroelectricity in mixed bismuth oxides with layer-type structure. J. Chem. Phys., 1961, 34(2), 695-696. https://doi.org/10.1063/1.1701024

    Article  CAS  Google Scholar 

  242. C. A.-P. de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523), 627-629. https://doi.org/10.1038/374627a0

    Article  CAS  Google Scholar 

  243. A. Moure. Review and perspectives of Aurivillius structures as a lead-free piezoelectric system. Appl. Sci., 2018, 8(1), 62. https://doi.org/10.3390/app8010062

    Article  CAS  Google Scholar 

  244. E. E. McCabe, E. Bousquet, C. P. J. Stockdale, C. A. Deacon, T. T. Tran, P. S. Halasyamani, M. C. Stennett, and N. C. Hyatt. Proper ferroelectricity in the Dion–Jacobson material CsBi2Ti2NbO10: Experiment and theory. Chem. Mater., 2015, 27(24), 8298-8309. https://doi.org/10.1021/acs.chemmater.5b03564

    Article  CAS  Google Scholar 

  245. S. Asaki, H. Akamatsu, G. Hasegawa, T. Abe, Y. Nakahira, S. Yoshida, C. Moriyoshi, and K. Hayashi. Ferroelectricity of Dion–Jacobson layered perovskites CsNdNb2O7 and RbNdNb2O7. Jpn. J. Appl. Phys., 2020, 59(SP), SPPC04. https://doi.org/10.35848/1347-4065/abad46

    Article  CAS  Google Scholar 

  246. I. G. Ismailzade. Kristallokhimiya segnetoelektrikov so sloistoi strukturoi (Crystal chemistry of ferroelectrics with a layered structure). In: Problemy kristallologii (Problems of Crystallology) / Ed. V.I. Smirnov. Moscow, Russia: Mosk. Gos. Univ., 1971, 264-275. [In Russian]

  247. R. L. Needs, S. E. Dann, M. T. Weller, J. C. Cherryman, and R. K. Harris. The structure and oxide/fluoride ordering of the ferroelectrics Bi2TiO4F2 and Bi2NbO5F. J. Mater. Chem., 2005, 15(24), 2399. https://doi.org/10.1039/b502499d

    Article  CAS  Google Scholar 

  248. H. G. von Schnering. Kristallstrukturen der Bariumfluorometallate(II) Ba2MF6 mit M = Zn, Cu, Ni, Co, Fe. Z. Anorg. Allg. Chem., 1967, 353(1/2), 13-25. https://doi.org/10.1002/zaac.19673530103

    Article  Google Scholar 

  249. A. Navulla, A. A. Tsirlin, A. M. Abakumov, R. V. Shpanchenko, H. Zhang, and E. V. Dikarev. Fluorinated heterometallic β-diketonates as volatile single-source precursors for the synthesis of low-valent mixed-metal fluorides. J. Am. Chem. Soc., 2011, 133(4), 692-694. https://doi.org/10.1021/ja109128r

    Article  CAS  PubMed  Google Scholar 

  250. K. Kadir and D. Noréus. A2H2[PtH4] (A = Sr and Ba), two hydrides with a layered structure type where [Pt(II)H4]2– complexes and hydrogen atoms in tetrahedral interstices share the same alkaline earth counter ions. Z. Phys. Chem., 1993, 179(1/2), 237-242. https://doi.org/10.1524/zpch.1993.179.part_1_2.237

    Article  CAS  Google Scholar 

  251. F. J. Berry, E. Moore, M. Mortimer, X. Ren, R. Heap, P. Slater, and M. F. Thomas. Synthesis and structural investigation of a new oxide fluoride of composition Ba2SnO2.5F3·xH2O (x f0bb 0.5). J. Solid State Chem., 2008, 181(9), 2185-2190. https://doi.org/10.1016/j.jssc.2008.05.015

    Article  CAS  Google Scholar 

  252. F. Abraham, J. Boivin, G. Mairesse, and G. Nowogrocki. The bimevox series: A new family of high performances oxide ion conductors. Solid State Ionics, 1990, 40/41, 934-937. https://doi.org/10.1016/0167-2738(90)90157-m

    Article  CAS  Google Scholar 

  253. J. C. Boivin and G. Mairesse. Recent material developments in fast oxide ion conductors. Chem. Mater., 1998, 10(10), 2870-2888. https://doi.org/10.1021/cm980236q

    Article  CAS  Google Scholar 

  254. K. D. M. Harris, W. Ueda, J. M. Thomas, and G. W. Smith. Cs2Bi10Ca6Cl12O16: A new type of catalyst for selective oxidation derived from bismuth oxychloride. Angew. Chem., Int. Ed. Engl., 1988, 27(10), 1364-1365. https://doi.org/10.1002/anie.198813641

    Article  Google Scholar 

  255. W. Ueda and J. M. Thomas. Bismuth-rich layered solids as catalysts for the oxidation of methane to higher hydrocarbons. J. Chem. Soc. Chem. Commun., 1988, (17), 1148. https://doi.org/10.1039/c39880001148

    Article  Google Scholar 

  256. J. Barrault, C. Grosset, M. Dion, M. Ganne, and M. Tournoux. Lamellar perovskites Bi2O2(An–1BnO3n+1lysts for oxidative coupling of methane. Catal. Lett., 1992, 16(1/2), 203-210. https://doi.org/10.1007/bf00764372

    Article  CAS  Google Scholar 

  257. H. Zhao, F. Tian, R. Wang, and R. Chen. A review on bismuth-related nanomaterials for photocatalysis. Rev. Adv. Sci. Eng., 2014, 3(1), 3-27. https://doi.org/10.1166/rase.2014.1050

    Article  Google Scholar 

  258. J. Li, Y. Yu, and L. Zhang. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale, 2014, 6(15), 8473-8488. https://doi.org/10.1039/c4nr02553a

    Article  CAS  PubMed  Google Scholar 

  259. Y. Xu, Z. Shi, L. Zhang, E. M. B. Brown, and A. Wu. Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy. Nanoscale, 2016, 8(25), 12715-12722. https://doi.org/10.1039/c5nr04540a

    Article  CAS  PubMed  Google Scholar 

  260. X. Jin, L. Ye, H. Xie, and G. Chen. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord. Chem. Rev., 2017, 349, 84-101. https://doi.org/10.1016/j.ccr.2017.08.010

    Article  CAS  Google Scholar 

  261. J. Li, H. Li, G. Zhan, and L. Zhang. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res., 2017, 50(1), 112-121. https://doi.org/10.1021/acs.accounts.6b00523

    Article  CAS  PubMed  Google Scholar 

  262. M. A. Gondal, C. Xiaofeng, and M. A. Dastageer. Novel Bismuth-Oxyhalide-Based Materials and their Applications. New Delhi, India: Springer, 2017. https://doi.org/10.1007/978-81-322-3739-6

    Book  Google Scholar 

  263. N. Latha, G. P. Darshan, D. R. Lavanya, S. C. Sharma, and H. Nagabhushana. Efficient luminescence of doped bismuth oxychloride nanophosphors and its surfaces prompted applications. J. Solid State Chem., 2022, 316, 123548. https://doi.org/10.1016/j.jssc.2022.123548

    Article  CAS  Google Scholar 

  264. S. Liu, W. Miiller, Y. Liu, M. Avdeev, and C. D. Ling. turally layered multiferroics. Chem. Mater., 2012, 24(20), 3932-3942. https://doi.org/10.1021/cm302342v

    Article  CAS  Google Scholar 

  265. D. O. Charkin, S. M. Kazakov, and D. N. Lebedev. Study of cationic substitution in Bi2WO6res in the framework of the modular approach. Russ. J. Inorg. Chem., 2010, 55(8), 1248-1256. https://doi.org/10.1134/s0036023610080164

    Article  CAS  Google Scholar 

  266. D. O. Charkin, D. N. Lebedev, and S. M. Kazakov. Multiple cation and anion substitutions into the structures of Bi2WO6 and PbBi3WO8Cl. J. Alloys Compd., 2012, 536, 155-160. https://doi.org/10.1016/j.jallcom.2012.04.113

    Article  CAS  Google Scholar 

  267. D. O. Charkin, V. S. Akinfiev, A. M. Alekseeva, M. Batuk, A. M. Abakumov, and S. M. Kazakov. Synthesis and cation distribution in the new bismuth oxyhalides with the Sillén–Aurivillius intergrowth structures. Dalton Trans., 2015, 44(47), 20568-20576. https://doi.org/10.1039/c5dt02620b

    Article  CAS  PubMed  Google Scholar 

  268. D. Ávila-Brande, L. C. Otero-Díaz, Á. R. Landa-Cánovas, S. Bals, and G. Van Tendeloo. A new Bi4Mn1/3W2/3O8tron microscopy. Eur. J. Inorg. Chem., 2006, 2006(9), 1853-1858. https://doi.org/10.1002/ejic.200501021

    Article  CAS  Google Scholar 

  269. D. Ávila-Brande, Á. R. Landa-Cánovas, and L. C. Otero-Díaz. Order–disorder and direct evidence of oxygen vacancies in a new family of BICUWOX compounds. Chem. Mater., 2007, 19(2), 323-328. https://doi.org/10.1021/cm062263j

    Article  CAS  Google Scholar 

  270. D. Ávila-Brande, Á. R. Landa-Cánovas, and L. C. Otero-Díaz. Order, disorder and structural modulations in Bi–Fe–W–O–Br Sillén–Aurivillius intergrowths. Acta Crystallogr., Sect. B: Struct. Sci., 2008, 64(4), 438-447. https://doi.org/10.1107/s0108768108019022

    Article  Google Scholar 

  271. A. M. Kusainova, P. Lightfoot, W. Zhou, S. Y. Stefanovich, A. V. Mosunov, and V. A. Dolgikh. Ferroelectric properties and crystal structure of the layered intergrowth phase Bi3Pb2Nb2O11Cl. Chem. Mater., 2001, 13(12), 4731-4737. https://doi.org/10.1021/cm011145n

    Article  CAS  Google Scholar 

  272. S. Liu, P. E. R. Blanchard, M. Avdeev, B. J. Kennedy, and C. D. Ling. Designing new n = 2 Sillen–Aurivillius phases by lattice-matched substitutions in the halide and [Bi2O2]2+ layers. J. Solid State Chem., 2013, 205, 165-170. https://doi.org/10.1016/j.jssc.2013.07.004

    Article  CAS  Google Scholar 

  273. A. M. Kusainova, S. Y. Stefanovich, J. T. S. Irvine, and P. Lightfoot. Structure–property correlations in the new ferroelectric Bi5PbTi3O14Cl and related layered oxyhalide intergrowth phases. J. Mater. Chem., 2002, 12(12), 3413-3418. https://doi.org/10.1039/b208245d

    Article  CAS  Google Scholar 

  274. D. O. Charkin, O. A. Dityatiev, A. B. Rakunov, V. A. Dolgikh, and F. Lightfoot. Novoe semeistvo sloistykh oksogalogenidov vismuta (A new family of layered bismuth oxohalogenides). Zh. Neorg. Khim., 2003, 48, 195. [In Russian]

  275. J. H. Albering and W. Jeitschko. Quaternary thorium transition metal pnictide oxides: ThCu1–xPO, ThCuAsO, and Th2Ni3–xP3O. Z. Naturforsch., B, 1996, 51(2), 257-262. https://doi.org/10.1515/znb-1996-0215

    Article  CAS  Google Scholar 

  276. S. Katrych, K. Rogacki, A. Pisoni, S. Bosma, S. Weyeneth, R. Gaal, N. D. Zhigadlo, J. Karpinski, and L. Forró. Pr4Fe2As2Te1–xO4: A layered FeAs-based superconductor. Phys. Rev. B, 2013, 87(18), 180508. https://doi.org/10.1103/physrevb.87.180508

    Article  Google Scholar 

  277. Y.-T. Shao, Z.-C. Wang, B.-Z. Li, S.-Q. Wu, J.-F. Wu, Z. Ren, S.-W. Qiu, C. Rao, C. Wang, and G.-H. Cao. BaTh2Fe4As4(N0.7O0.3)2: An iron-based superconductor stabilized by inter-block-layer charge transfer. Sci. China Mater., 2019, 62(9), 1357-1362. https://doi.org/10.1007/s40843-019-9438-7

    Article  Google Scholar 

  278. Z.-C. Wang, C.-Y. He, S.-Q. Wu, Z.-T. Tang, Y. Liu, A. Ablimit, C.-M. Feng, and G.-H. Cao. Superconductivity in KCa2Fe4As4F2 with separate double Fe2As2 layers. J. Am. Chem. Soc., 2016, 138(25), 7856-7859. https://doi.org/10.1021/jacs.6b04538

    Article  CAS  PubMed  Google Scholar 

  279. S.-Q. Wu, Z.-C. Wang, C.-Y. He, Z.-T. Tang, Y. Liu, and G.-H. Cao. Superconductivity at 33-37 K in ALn2Fe4As4O2 (A = K and Cs; Ln = lanthanides). Phys. Rev. Mater., 2017, 1(4), 044804. https://doi.org/10.1103/physrevmaterials.1.044804

    Article  CAS  Google Scholar 

  280. M. Eul, D. Johrendt, and R. Pöttgena. An extension of pnictide oxide chemistry - salt flux synthesis and structure of La5Cu4As4O4Cl2. Z. Naturforsch., B, 2009, 64(11/12), 1353-1359. https://doi.org/10.1515/znb-2009-11-1215

    Article  CAS  Google Scholar 

  281. T. Bartsch, C. Benndorf, H. Eckert, M. Eul, and R. Pöttgen. La3Cu4P4O2 and La5Cu4P4O4Cl2ture and 31P solid state NMR spectroscopy. Z. Naturforsch., B, 2016, 71(2), 149-155. https://doi.org/10.1515/znb-2015-0181

    Article  CAS  Google Scholar 

  282. H. Jiang, Y.-L. Sun, Z.-A. Xu, and G.-H. Cao. Crystal chemistry and structural design of iron-based superconductors. Chin. Phys. B, 2013, 22(8), 087410. https://doi.org/10.1088/1674-1056/22/8/087410

    Article  CAS  Google Scholar 

  283. J. W. Kaiser and W. Jeitschko. Quaternary phosphide oxides Pr3Cu4P4O2–x and Sm3Cu4P4O2–x with ordered Zr3Cu4Si6-type structure. Z. Naturforsch., B, 2002, 57(2), 165-170. https://doi.org/10.1515/znb-2002-0206

    Article  CAS  Google Scholar 

  284. Q. D. Gibson, J. A. Newnham, M. S. Dyer, C. M. Robertson, M. Zanella, T. W. Surta, L. M. Daniels, J. Alaria, J. B. Claridge, and M. J. Rosseinsky. Expanding multiple anion superlattice chemistry: Synthesis, structure and properties of Bi4O4SeBr2 and Bi6O6Se2Cl2. J. Solid State Chem., 2022, 312, 123246. https://doi.org/10.1016/j.jssc.2022.123246

    Article  CAS  Google Scholar 

  285. T. K. Reynolds, J. G. Bales, and F. J. DiSalvo. Synthesis and properties of a new metal-rich nickel antimonide telluride or selenide: Ni7–SbX2 (f064 f0bb 1.3; X = Se or Te). Chem. Mater., 2002, 14(11), 4746-4751. https://doi.org/10.1021/cm020585r

    Article  CAS  Google Scholar 

  286. A. N. Kuznetsov, E. A. Stroganova, and E. Y. Zakharova. Many faces of a single cuboctahedron: Group 10 metal-rich ternary compounds based on the AuCu3 structure type (review). Russ. J. Inorg. Chem., 2019, 64(13), 1625-1640. https://doi.org/10.1134/s0036023619130059

    Article  CAS  Google Scholar 

  287. E. A. Stroganova, S. M. Kazakov, V. N. Khrustalev, N. N. Efimov, and A. N. Kuznetsov. First examples of nickel–aluminum mixed chalcogenides based on the AuCu3-type fragments: Breaking a robust intermetallic bond system in Ni3Al. J. Solid State Chem., 2022, 306, 122815. https://doi.org/10.1016/j.jssc.2021.122815

    Article  CAS  Google Scholar 

  288. A. N. Kuznetsov, E. A. Stroganova, A. A. Serov, D. I. Kirdyankin, and V. M. Novotortsev. New quasi-2D nickel-gallium mixed chalcogenides based on the Cu3Au-type extended fragments. J. Alloys Compd., 2017, 696, 413-422. https://doi.org/10.1016/j.jallcom.2016.11.292

    Article  CAS  Google Scholar 

  289. A. A. Isaeva. Nizshie troinye khal′sional Heterometallic Fragments: Synthesis, Crystalline and Electronic Structure, Physical Properties): Cand. (Chem.) Dissertation. Moscow: Moscow State University, 2008. [In Russian]

  290. A. I. Baranov, A. A. Isaeva, L. Kloo, and B. A. Popovkin. New metal-rich sulfides Ni6SnS2 and Ni9Sn2S2 with a 2D metal framework: Synthesis, crystal structure, and bonding. Inorg. Chem., 2003, 42, 6667. https://doi.org/10.1021/ic034349+

    Article  CAS  Google Scholar 

  291. A. N. Kuznetsov and A. A. Serov. Ni5.73InSe2 - a metal-rich selenide based on the Cu3lic framework: Synthesis, structure, and bonding. Eur. J. Inorg. Chem., 2016, 2016(3), 373-379. https://doi.org/10.1002/ejic.201501197

    Article  CAS  Google Scholar 

  292. A. A. Isaeva, A. I. Baranov, T. Doert, M. Ruck, V. A. Kulbachinskii, R. A. Lunin, and B. A. Popovkin. New metal-rich mixed chalcogenides with an intergrowth structure: Ni5.68SiSe2, Ni5.46GeSe2, and Ni5.42GeTe2. Russ. Chem. Bull., 2007, 56(9), 1694-1700. https://doi.org/10.1007/s11172-007-0263-1

    Article  CAS  Google Scholar 

  293. A I. Baranov, A. A. Isaeva, L. Kloo, V. A. Kulbachinskii, R. A. Lunin, V. N. Nikiforov, and B. A. Popovkin. 2D metal slabs in new nickel–tin chalcogenides Ni7–SnQ2 (Qres, chemical bonding and physical properties. J. Solid State Chem., 2004, 177(10), 3616-3625. https://doi.org/10.1016/j.jssc.2004.05.061

    Article  CAS  Google Scholar 

  294. E. A. Stroganova, S. M. Kazakov, N. N. Efimov, V. N. Khrustalev, S. Keilholz, A. Götze, H. Kohlmann, and A. N. Kuznetsov. Nickel - p-block metal mixed chalcogenides based on AuCu3-type fragments: iodine-assisted synthesis as a way of obtaining new structures. Dalton Trans., 2020, 49(42), 15081-15094. https://doi.org/10.1039/d0dt03082a

    Article  CAS  PubMed  Google Scholar 

  295. A. A. Isaeva, A. I. Baranov, L. Kloo, M. Ruck, and B. A. Popovkin. New metal-rich mixed chalcogenides with intergrowth structures: Ni8.21Ge2S2 and Ni8.45Ge2Se2. Solid State Sci., 2009, 11(6), 1071-1076. https://doi.org/10.1016/j.solidstatesciences.2009.03.005

    Article  CAS  Google Scholar 

  296. A. A. Isaeva, A. I. Baranov, T. Doert, B. A. Popovkin, V. A. Kulbachinskii, P. V. Gurin, V. G. Kytin, and V. I. Shtanov. Ni7–SnTe2: Modulated crystal structure refinement, electronic structure and anisotropy of electroconductivity. J. Solid State Chem., 2007, 180(1), 221-232. https://doi.org/10.1016/j.jssc.2006.09.003

    Article  CAS  Google Scholar 

  297. E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J. Chem. Phys., 1967, 47(4), 1300-1307. https://doi.org/10.1063/1.1712084

    Article  CAS  Google Scholar 

  298. S. V. Savilov, A. N. Kuznetsov, B. A. Popovkin, V. N. Khrustalev, P. Simon, J. Getzschmann, T. Doert, and M. Ruck. Synthesis, crystal structure and electronic structure of modulated Pd7–SnTe2. Z. Anorg. Allg. Chem., 2005, 631(2/3), 293-301. https://doi.org/10.1002/zaac.200400264

    Article  CAS  Google Scholar 

  299. M. El-Boragy and K. Schubert. Über eine verzerrte dichteste Kugelpackung mit Leerstellen / On a deformed close-packed structure containing constitutional vacancies. Int. J. Mater. Res., 1970, 61(8), 579-584. https://doi.org/10.1515/ijmr-1970-610806

    Article  CAS  Google Scholar 

  300. E. Y. Zakharova, S. M. Kazakov, A. A. Isaeva, A. M. Abakumov, G. Van Tendeloo, and A. N. Kuznetsov. Pd5InSe and Pd8In2Se - New metal-rich homological selenides with 2D palladium–indium fragments: Synthesis, structure and bonding. J. Alloys Compd., 2014, 589, 48-55. https://doi.org/10.1016/j.jallcom.2013.11.172

    Article  CAS  Google Scholar 

  301. E. Y. Zakharova, E. O. Dobroljubov, S. M. Kazakov, V. N. Khrustalev, and A. N. Kuznetsov. Ternary palladium - group 12 metal compounds of the Pd5TlAs-type: A case study. J. Solid State Chem., 2019, 276, 217-225. https://doi.org/10.1016/j.jssc.2019.05.009

    Article  CAS  Google Scholar 

  302. A. Götze, J. M. Sander, and H. Kohlmann. Crystal structures and hydrogenation properties of palladium-rich compounds with elements from groups 12-16. Z. Naturforsch., B, 2016, 71(5), 503-508. https://doi.org/10.1515/znb-2016-0003

    Article  CAS  Google Scholar 

  303. F. Laufek, A. Vymazalová, M. Drábek, J. Navrátil, T. Plecháček, and J. Drahokoupil. Crystal structure and transport properties of Pd5HgSe. Solid State Sci., 2012, 14statesciences.2012.08.019

    Article  CAS  Google Scholar 

  304. E. Y. Zakharova, N. A. Andreeva, S. M. Kazakov, and A. N. Kuznetsov. Ternary arsenides based on platinum–indium and palladium–indium fragments of the Cu3Au-type: Crystal structures and chemical bonding. JAlloys Compd., 2015, 621, 307-313. https://doi.org/10.1016/j.jallcom.2014.09.180

    Article  CAS  Google Scholar 

  305. E. Y. Zakharova, S. M. Kazakov, A. Götze, H. Kohlmann, and A. N. Kuznetsov. Ternary palladium-indium-phosphorus and platinum-indium-phosphorus compounds based on the Cu3Au-type: Structure, bonding, and properties. J. Solid State Chem., 2018, 265, 266-273. https://doi.org/10.1016/j.jssc.2018.06.012

    Article  CAS  Google Scholar 

  306. X. Gui, R. A. Klein, C. M. Brown, and W. Xie. Chemical bonding governs complex magnetism in MnPt5P. Inorg. Chem., 2021, 60(1), 87-96. https://doi.org/10.1021/acs.inorgchem.0c02403

    Article  CAS  PubMed  Google Scholar 

  307. X. Gui and W. Xie. Crystal structure, magnetism, and electronic properties of a rare-earth-free ferromagnet: MnPt5As. Chem. Mater., 2020, 32(9), 3922-3929. https://doi.org/10.1021/acs.chemmater.0c00244

    Article  CAS  Google Scholar 

  308. R. S. Dissanayaka Mudiyanselage, Q. Zhang, M. Marshall, M. Croft, Z. Shu, T. Kong, and W. Xie. Spin reorienttation in antiferromagnetic MnPd5Se with an anti-CeCoIn5 structure type. Inorg. Chem., 2022, 61(9), 3981-3988. https://doi.org/10.1021/acs.inorgchem.1c03637

    Article  CAS  PubMed  Google Scholar 

  309. X. Gui, M. Marshall, R. S. Dissanayaka Mudiyanselage, R. A. Klein, Q. Chen, Q. Zhang, W. Shelton, H. Zhou, C. M. Brown, H. Cao, M. Greenblatt, and W. Xie. Spin reorientation in antiferromagnetic layered FePt5P. ACS Appl. Electron. Mater., 2021, 3(8), 3501-3508. https://doi.org/10.1021/acsaelm.1c00459

    Article  CAS  Google Scholar 

  310. A. Tursina, S. Nesterenko, Y. Seropegin, H. Noël, and D. Kaczorowski. Ce2PdIn8, Ce3PdIn11 and Ce5Pd2In19 - members of homological series based on AuCu3- and PtHg2-type structural units. J. Solid State Chem., 2013, 200, 7-12. https://doi.org/10.1016/j.jssc.2012.12.037

    Article  CAS  Google Scholar 

  311. A. Vymazalová, F. Laufek, T. L. Grokhovskaya, and C. J. Stanley. Viteite, Pd5chetundra layered intrusion, Kola Peninsula, Russia. Can. Mineral., 2020, 58(3), 395-402. https://doi.org/10.3749/canim.1900080

    Article  CAS  Google Scholar 

  312. C. Ma and J. R. Beckett. Nuwaite (Ni6GeS2) and butianite (Ni6SnS2), two new minerals from the Allende meteorite: Alteration products in the early solar system. Am. Mineral., 2018, 103(12), 1918-1924. https://doi.org/10.2138/am-2018-6599

    Article  Google Scholar 

  313. P. C. Burns. U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can. Mineral., 2005, 43(6), 1839-1894. https://doi.org/10.2113/gscanmin.43.6.1839

    Article  CAS  Google Scholar 

  314. A. J. Lussier, R. A. K. Lopez, and P. C. Burns. A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Can. Mineral., 2016, 54(1), 177-283. https://doi.org/10.3749/canmin.1500078

    Article  CAS  Google Scholar 

  315. S. E. Gilson and P. C. Burns. The crystal and coordination chemistry of neptunium in all its oxidation states: An expanded structural hierarchy of neptunium compounds. Coord. Chem. Rev., 2021, 445, 213994. https://doi.org/10.1016/j.ccr.2021.213994

    Article  CAS  Google Scholar 

  316. T. Z. Forbes, C. Wallace, and P. C. Burns. Neptunyl compounds: Polyhedron geometries, bond-valence parameters, and structural hierarchy. Can. Mineral., 2008, 46(6), 1623-1645. https://doi.org/10.3749/canmin.46.6.1623

    Article  CAS  Google Scholar 

  317. M. L. Miller, R. J. Finch, P. C. Burns, and R. C. Ewing. Description and classification of uranium oxide hydrate sheet anion topologies. J. Mater. Res., 1996, 11(12), 3048-3056. https://doi.org/10.1557/jmr.1996.0387

    Article  CAS  Google Scholar 

  318. S. V. Krivovichev. Structural Crystallography of Inorganic Oxysalts. Oxford, UK: Oxford University Press, 2009. https://doi.org/10.1093/acprof:oso/9780199213207.001.1

  319. S. V. Krivovichev and P. C. Burns. Crystal chemistry of uranyl molybdates. I. The structure and formula of umohoite. Can. Mineral., 2000, 38(3), 717-726. https://doi.org/10.2113/gscanmin.38.3.717

    Article  CAS  Google Scholar 

  320. F. Dal Bo, S. M. Aksenov, F. Hatert, and P.C. Burns. Synthesis, IR spectroscopy and crystal structure of [(UO2)2{Be(H2O)2(PO4)2}]·(H2O), the first compound with a trimer beryllophosphate anion. Z. Kristallogr. - Cryst. Mater., 2018, 233(6), 391-398. https://doi.org/10.1515/zkri-2017-2113

    Article  CAS  Google Scholar 

  321. A. J. Locock. Crystal Chemistry of Uranyl Phosphates, Arsenates and Oxysalts of Chromium(V): Implications for Remediation: Doctoral Dissertation. Notre Dame, Indiana: University of Notre Dame, 2004.

  322. R. J. Francis, M. J. Drewitt, P. Shiv Halasyamani, C. Ranganathachar, D. O′Hare, W. Clegg, and S. J. Teat. Organically templated layered uranium(VI) phosphates: Hydrothermal syntheses and structures of [NHEt3][(UO2)2(PO4)(HPO4)] and [NPr4][(UO2)3(PO4)(HPO4)2]. Chem. Commun., 1998, (2), 279-280. https://doi.org/10.1039/a706873e

    Article  Google Scholar 

  323. J. A. Danis, W. H. Runde, B. Scott, J. Fettinger, and B. Eichhorn. Hydrothermal synthesis of the first organically templated open-framework uranium phosphate. Chem. Commun., 2001, (22), 2378-2379. https://doi.org/10.1039/b106916k

    Article  Google Scholar 

  324. F. C. Hawthorne and D. M. C. Huminicki. The crystal chemistry of beryllium. Rev. Mineral. Geochem., 2002, 50(1), 333-403. https://doi.org/10.2138/rmg.2002.50.9

    Article  CAS  Google Scholar 

  325. S. Chong, S. M. Aksenov, F. Dal Bo, S. N. Perry, F. Dimakopoulou, and P. C. Burns. Framework polymorphism and modular crystal structures of uranyl vanadates of divalent cations: Synthesis and characterization of M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2. Z. Anorg. Allg. Chem., 2019, 645(15), 981-987. https://doi.org/10.1002/zaac.201900092

    Article  CAS  Google Scholar 

  326. J. Huang and A. W. Sleight. Crystal structure of high temperature strontium pyrovanadate. Mater. Res. Bull., 1992, 27(5), 581-590. https://doi.org/10.1016/0025-5408(92)90146-q

    Article  CAS  Google Scholar 

  327. A. Mer, S. Obbade, M. Rivenet, C. Renard, and F. Abraham. [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology. JSolid State Chem., 2012, 185, 180-186. https://doi.org/10.1016/j.jssc.2011.10.042

    Article  CAS  Google Scholar 

  328. A. J. Locock and P. C. Burns. The crystal structure of triuranyl diphosphate tetrahydrate. J. Solid State Chem., 2002, 163(1), 275-280. https://doi.org/10.1006/jssc.2001.9407

    Article  CAS  Google Scholar 

  329. A. J. Locock and P. C. Burns. Crystal structures of three framework alkali metal uranyl phosphate hydrates. JSolid State Chem., 2002, 167(1), 226-236. https://doi.org/10.1006/jssc.2002.9646

    Article  CAS  Google Scholar 

  330. T. Z. Forbes. Ba(NpO2)(PO4)(H2corporation in uranyl minerals. Am. Mineral., 2006, 91(7), 1089-1093. https://doi.org/10.2138/am.2006.2132

    Article  CAS  Google Scholar 

  331. M. S. Grigorev, N. A. Baturin, A. M. Fedoseev, and N. A. Budantseva. Kristallicheskaya i molekulyarnaya struktura slozhnykh khromatov neptuniya (V): gidrat khromata neptunila tseziya (CsNpO2(CrO4)·H2O) i khromata neptunila ammoniya ((NH4)4(NpO2)2(CrO4)3) (Crystal and molecular structure of complex neptunium (V) chromates: cesium neptunyl chromate hydrate (CsNpO2(CrO4)·H2O) and ammonium neptunyl chromate ((NH4)4(NpO2)2(CrO4)3)). Radiokhimiya, 1991, 33, 53-63. [In Russian]

  332. G. B. Jin, S. Skanthakumar, and L. Soderholm. action framework in (NpO2)3(OH)(SeO3)(H2O)2·H2O and a uranophane-type sheet in Na(NpO2)(SeO3)(H2O). Inorg. Chem., 2011, 50(13), 6297-6303. https://doi.org/10.1021/ic200696g

    Article  CAS  PubMed  Google Scholar 

  333. F. Dal Bo, T. Kohlgruber, J. E. S. Szymanowski, S. M. Aksenov, and P. C. Burns. Rb2[Ca(NpO2)2(PO4)2], the first mixed alkali–alkaline earth metals neptunyl(V) phosphate: Crystal chemistry and sheet stereoisomerism. Cryst. Growth Des., 2018, 18(12), 7254-7258. https://doi.org/10.1021/acs.cgd.8b01627

    Article  CAS  Google Scholar 

  334. D. Ginderow. Structure de l′uranophane alpha, Ca(UO2)2(SiO3OH)2.5H2O. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1988, 44(3), 421-424. https://doi.org/10.1107/s0108270187011491

    Article  Google Scholar 

  335. A. V. Barinova, R. K. Rastsvetaeva, G. A. Sidorenko, and I. A. Verin. Crystal structure of β-uranophane from the Transbaikal Region and its relation to the structure of the α modification. Crystallogr. Rep., 2003, 48(1), 12-15. https://doi.org/10.1134/1.1541735

    Article  CAS  Google Scholar 

  336. P. C. Burns, M. L. Miller, and R. C. Ewing. U6+ minerals and inorganic phases: A comparison and hierarchy of crystal structures. Can. Mineral., 1996, 34(4), 845-880.

  337. B. O. Loopstra. Neutron diffraction investigation of U3O8. Acta Crystallogr., 1964, 17(6), 651-654. https://doi.org/10.1107/s0365110x6400158x

    Article  CAS  Google Scholar 

  338. L. Jahnberg. A series of structures based on stacking of α-U3O8-type layers of MO7 pentagonal bipyramids. Mater. Res. Bull., 1981, 16(5), 513-518. https://doi.org/10.1016/0025-5408(81)90116-1

    Article  CAS  Google Scholar 

  339. N. King, J. Boltersdorf, P. Maggard, and W. Wong-Ng. Polymorphism and structural distortions of mixed-metal oxide photocatalysts constructed with α-U3O8 types of layers. Crystals, 2017, 7(5), 145. https://doi.org/10.3390/cryst7050145

    Article  CAS  Google Scholar 

  340. B. O. Loopstra. The structure of β-U3O8. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1970, 26(5), 656-657. https://doi.org/10.1107/s0567740870002935

    Article  CAS  Google Scholar 

  341. F. Dal Bo, S. M. Aksenov, and P. C. Burns. Mg[(UO2)2(Ge2O6(OH)2)]·(H2O)4.4, a novel compound with mixed germanium coordination: Cation disordering and topological features of β-U3O8 type sheets. Z. Kristallogr. - Cryst. Mater., 2019, 234(6), 383-393. https://doi.org/10.1515/zkri-2018-2156

    Article  CAS  Google Scholar 

  342. T. Z. Forbes and P. C. Burns. Synthesis, structure, and infrared spectroscopy of the first Np5+ neptunyl silicates, Li6(NpO2)4(H2Si2O7)(HSiO4)2(H2O)4 and K3(NpO2)3(SiO3OH)2. Inorg. Chem., 2008, 47(2), 705-712. https://doi.org/10.1021/ic701335j

    Article  CAS  PubMed  Google Scholar 

  343. I. Duribreux, M. Saadi, S. Obbade, C. Dion, and F. Abraham. Synthesis and crystal structure of two new uranyl oxychloro-vanadate layered compounds: M7(UO2)8(VO4)2O8Cl with M = Rb, Cs. J. Solid State Chem., 2003, 172(2), 351-363. https://doi.org/10.1016/s0022-4596(02)00121-4

    Article  CAS  Google Scholar 

  344. P. C. Burns, R. J. Finck, F. C. Hawthorne, M. L. Miller, and R. C. Ewing. The crystal structure of ianthinite, a mixed-valence uranium oxide hydrate. MRS Proc., 1996, 465, 1193. https://doi.org/10.1557/proc-465-1193

    Article  Google Scholar 

  345. P. C. Burns and R. J. Finch. Wyartite; crystallographic evidence for the first pentavalent-uranium mineral. Am. Mineral., 1999, 84(9), 1456-1460. https://doi.org/10.2138/am-1999-0926

    Article  CAS  Google Scholar 

  346. A. C. Bean, K. Abney, B. L. Scott, and W. Runde. Structural characterization of the first hydroxo-bridged plutonium compound, (PuO2)2(IO3)(f06d2-OH)3. Inorg. Chem., 2005, 44(15), 5209-5211. https://doi.org/10.1021/ic0507464

    Article  CAS  PubMed  Google Scholar 

  347. P. C. Burns, R. C. Ewing, and M. L. Miller. Incorporation mechanisms of actinide elements into the structures of U6+ phases formed during the oxidation of spent nuclear fuel. J. Nucl. Mater., 1997, 245(1), 1-9. https://doi.org/10.1016/s0022-3115(97)00006-8

    Article  CAS  Google Scholar 

  348. V. M. Kovrugin, V. V. Gurzhiy, S. V. Krivovichev, I. G. Tananaev, and B. F. Myasoedov. Unprecedented layer topology in the crystal structure of a new organically templated uranyl selenite-selenate. Mendeleev Commun., 2012, 22(1), 11-12. https://doi.org/10.1016/j.mencom.2012.01.003

    Article  CAS  Google Scholar 

  349. V. V. Gurzhiy, V. M. Kovrugin, O. S. Tyumentseva, P. A. Mikhaylenko, S. V. Krivovichev, and I. G. Tananaev. Topologically and geometrically flexible structural units in seven new organically templated uranyl selenates and selenite–selenates. J. Solid State Chem., 2015, 229, 32-40. https://doi.org/10.1016/j.jssc.2015.04.040

    Article  CAS  Google Scholar 

  350. V. V. Gurzhiy, O. S. Tyumentseva, S. N. Britvin, S. V. Krivovichev, and I. G. Tananaev. Ring opening of azetidine cycle: First examples of 1-azetidinepropanamine molecules as a template in hybrid organic-inorganic compounds. J. Mol. Struct., 2018, 1151, 88-96. https://doi.org/10.1016/j.molstruc.2017.09.042

    Article  CAS  Google Scholar 

  351. S. V. Krivovichev, V. V. Gurzhiy, I. G. Tananaev, and B. F. Myasoedov. Uranyl selenates with organic templates: Principles of structure and characteristics of self-organization. Russ. J. Gen. Chem., 2009, 79(12), 2723-2730. https://doi.org/10.1134/s1070363209120317

    Article  CAS  Google Scholar 

  352. P. A. Smith, S. M. Aksenov, S. Jablonski, and P. C. Burns. Structural unit charge density and molecular cation templating effects on orientational geometric isomerism and interlayer spacing in 2-D uranyl sulfates. JSolid State Chem., 2018, 266, 286-296. https://doi.org/10.1016/j.jssc.2018.07.028

    Article  CAS  Google Scholar 

  353. E. R. Parnham and R. E. Morris. Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids. Acc. Chem. Res., 2007, 40(10), 1005-1013. https://doi.org/10.1021/ar700025k

    Article  CAS  PubMed  Google Scholar 

  354. T. A. Kohlgruber, S. A. Mackley, F. D. Bo, S. M. Aksenov, and P. C. Burns. The role of 1-ethyl-3-methylimidazolium diethyl phosphate ionic liquid in uranyl phosphate compounds. J. Solid State Chem., 2019, 279, 120938. https://doi.org/10.1016/j.jssc.2019.120938

    Article  CAS  Google Scholar 

  355. S. V. Krivovichev. Combinatorial topology of salts of inorganic oxoacids: zero-, one- and two-dimensional units with corner-sharing between coordination polyhedra. Crystallogr. Rev., 2004, 10(3), 185-232. https://doi.org/10.1080/0889311042000261825

    Article  CAS  Google Scholar 

  356. E. Bonaccorsi. Modular microporous minerals: Cancrinite-davyne group and C–S–H phases. Rev. ral. Geochem., 2005, 57(1), 241-290. https://doi.org/10.2138/rmg.2005.57.8

    Article  CAS  Google Scholar 

  357. I. Hassan. Feldspathoids and their relationships to zeolites. Kuwait J. Sci. Eng., 1997, 24, 163-183.

  358. N. V. Belov. Stroyenie ionnykh kristallov i metallicheskikh faz (Structure of Ionic Crystals and Metal Phases). Moscow, Russia: Akad. Nauk SSSR, 1947. [In Russian]

  359. R. M. Thompson and R. T. Downs. Systematic generation of all nonequivalent closest-packed stacking sequences of length N using group theory. Acta Crystallogr., Sect. B: Struct. Sci., 2001, 57(6), 766-771. https://doi.org/10.1107/s010876810101552x

    Article  CAS  Google Scholar 

  360. E. Bonaccorsi and S. Nazzareni. Crystal chemical models for the cancrinite-sodalite supergroup: The structure of a new 18-layer phase. Z. Kristallogr. - Cryst. Mater., 2015, 230(5), 345-351. https://doi.org/10.1515/zkri-2014-1819

    Article  CAS  Google Scholar 

  361. N. V. Chukanov, S. M. Aksenov, and I. V. Pekov. Infrared spectroscopy as a tool for the analysis of framework topology and extra-framework components in microporous cancrinite- and sodalite-related aluminosilicates. Spectrochim. Acta, Part A, 2023, 287, 121993. https://doi.org/10.1016/j.saa.2022.121993

    Article  CAS  PubMed  Google Scholar 

  362. I. A. Trojan, D. V. Semenok, A. G. Ivanova, A. G. Kvashnin, D. Zhou, A. V. Sadakov, O. A. Sobolevsky, V. M. Pudalov, I. S. Lyubutin, and A. R. Oganov. Vysokotemperaturnaya sverkhprovodimost′ v gidridakh (High-temperature superconductivity in hydrides). Usp. Fiz. Nauk, 2022, 192(07), 799-813. https://doi.org/10.3367/ufnr.2021.05.039187 [In Russian]

    Article  Google Scholar 

  363. A. M. Golubev and Yu. V. Kuchina. Kristallokhimiya flyuoritopodobnykh klatratov AB3F10 (Crystal chemistry of fluorite-like clathrates AB3F10). Zh. Neorg. Khim., 2014, 59(3), 355-360. https://doi.org/10.7868/s0044457x14030076 [In Russian]

    Article  PubMed  Google Scholar 

  364. D. N. Karimov, I. I. Buchinskaya, N. A. Arkharova, A. G. Ivanova, A. G. Savelyev, N. I. Sorokin, and P. A. Popov. Growth peculiarities and properties of KR3F10 (R = Y, Tb) single crystals. Crystals, 2021, 11(3), 285. https://doi.org/10.3390/cryst11030285

    Article  CAS  Google Scholar 

  365. B. P. Sobolev. Polymorphism, isomorphism, and morphotropy in trifluorides of rare-earth elements (R) and RF3–R′F3 systems. Crystallogr. Rep., 2020, 65(4), 521-533. https://doi.org/10.1134/s1063774520040203

    Article  CAS  Google Scholar 

  366. B. P. Sobolev. The Rare Earth Trifluorides. Part 1: The High Temperature Chemistry of Rare Earth Trifluorides. Barcelona, Catalonia, Spain: Institut d′Estudis Catalans, 2000.

  367. A. M. Golubev. Klastery nanometrovogo razmera v strukturakh flyuoritovykh faz Ba1–xRxF2+x (R = Y, La–Lu) i uporyadochennykh faz MmRnF2m+3n (M = Ca, Sr, Ba) s proizvodnoi strukturoi (Nanometer-sized clusters in the structures of fluorite phases Ba1–xRxF2+x (R = Y, La–Lu) and ordered phases MmRnF2m+3n (M = Ca, Sr, Ba) with a derivative structure): Extended Abstract of Doctoral (Chem.) Dissertation. Moscow, Russia: Shubnikov Institute of Crystallography, 2009. [In Russian]

  368. E. A. Sulyanova, D. N. Karimov, and B. P. Sobolev. Displacements in the cationic motif of nonstoichiometric fluorite phases Ba1–xRxF2+x as a result of the formation of {Ba8[R6F68–69]} clusters: III. Defect cluster structure of the nonstoichiometric phase Ba0.69La0.31F2.31 and its dependence on heat treatment. Crystals, 2021, 11(4), 447. https://doi.org/10.3390/cryst11040447

    Article  CAS  Google Scholar 

  369. N. P. Laverov, V. S. Urusov, S. V. Krivovichev, A. S. Pakhomova, S. V. Stefanovsky, and S. V. Yudintsev. Modular nature of the polysomatic pyrochlore-murataite series. Geol. Ore Deposite, 2011, 53(4), 273-294. https://doi.org/10.1134/s1075701511040040

    Article  Google Scholar 

  370. A. S. Pakhomova, S. V. Krivovichev, S. V. Yudintsev, and S. V. Stefanovsky. Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste: Crystal structure and its comparison with natural analogues. Z. Kristallogr. - Cryst. Mater., 2013, 228(3), 151-156. https://doi.org/10.1524/zkri.2013.1578

    Article  CAS  Google Scholar 

  371. S. V. Krivovichev, S. V. Yudintsev, S. V. Stefanovsky, N. I. Organova, O. V. Karimova, and V. S. Urusov. Murataite-pyrochlore series: A family of complex oxides with nanoscale pyrochlore clusters. Angew. Chem., Int. Ed., 2010, 49(51), 9982-9984. https://doi.org/10.1002/anie.201005674

    Article  CAS  Google Scholar 

  372. S. V. Yudintsev, M. S. Nickolsky, M. I. Ojovan, O. I. Stefanovsky, B. S. Nikonov, and A. S. Ulanova. Zirconolite polytypes and murataite polysomes in matrices for the REE - actinide fraction of HLW. Materials, 2022, 15(17), 6091. https://doi.org/10.3390/ma15176091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. B. I. Lazoryak. Design of inorganic compounds with tetrahedral anions. Russ. Chem. Rev., 1996, 65(4), 287-305. https://doi.org/10.1070/rc1996v065n04abeh000211

    Article  Google Scholar 

  374. J. Lima-de-Faria. The close packing in the classification of minerals. Eur. J. Mineral., 2012, 24(1), 163-169. https://doi.org/10.1127/0935-1221/2011/0023-2159

    Article  CAS  Google Scholar 

  375. Yu. K. Egorov-Tismenko, E. V. Sokolova, N. L. Smirnova, and N. A. Yamnova. Kristallokhimicheskie osobennosti mineralov, rodstvennykh strukturnomu tipu glazerita (Crystal chemical features of minerals related to the structural type of glaserite). Mineral. Zh., 1984, 6, 3-9. [In Russian]

  376. N. A. Yamnova, Y. K. Egorov-Tismenko, E. R. Gobechiya, A. E. Zadov, and V. M. Gazeev. New data on polymorphic modifications of anhydrous dicalcium orthosilicate. New Data Miner., 2008, 43, 54.

  377. L. A. Gorelova, L. P. Vergasova, S. V. Krivovichev, E. Yu. Avdontseva, S. V. Moskaleva, G. A. Karpov, and S. K. Filatov. Bubnovaite, K2Na8Ca(SO4)6, a new mineral species with modular structure from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J. Mineral., 2016, 28(3), 677-686. https://doi.org/10.1127/ejm/2016/0028-2530

    Article  CAS  Google Scholar 

  378. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, G. Blass, D. A. Varlamov, I. V. Pekov, D. I. Belakovskiy, and V. V. Gurzhiy. Calcinaksite, KNaCa(Si4O10) H2O, a new mineral from the Eifel volcanic area, Germany. Mineral. Petrol., 2015, 109(4), 397-404. https://doi.org/10.1007/s00710-015-0376-4

    Article  CAS  Google Scholar 

  379. P. B. Moore. Complex crystal structures related to glaserite, K3Na(SO4)2: evidence for very dense packings among oxysalts. Bull. Minéral., 1981, 104(4), 536-547. https://doi.org/10.3406/bulmi.1981.7504

    Article  CAS  Google Scholar 

  380. P. Β. Moore. The glaserite, K3Na[SO4]2, structure type as a “super” dense-packed oxide: evidence for icosahedral geometry and cation-anion mixed layer packings. Neues Jahrb. Mineral., Abh., 1976, 127(2), 187-196.

  381. N. A. Yamnova, N. V. Zubkova, N. N. Eremin, A. E. Zadov, and V. M. Gazeev. Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr. Rep., 2011, 56(2), 210-220. https://doi.org/10.1134/s1063774511020209

    Article  CAS  Google Scholar 

  382. A. E. Zadov, V. M. Gazeev, N. N. Pertsev, A. G. Gurbanov, N. A. Yamnova, E. R. Gobechiya, and N. V. Chukanov. Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4). Dokl. Earth Sci., 2008, 423(2), 1431-1434. https://doi.org/10.1134/s1028334x08090237

    Article  Google Scholar 

  383. E. R. Gobechiya, N. A. Yamnova, A. E. Zadov, and V. M. Gazeev. Calcio-olivine γ-Ca2SiO4: I. Rietveld refinement of the crystal structure. Crystallogr. Rep., 2008, 53(3), 404-408. https://doi.org/10.1134/s1063774508030073

    Article  CAS  Google Scholar 

  384. A. E. Zadov, V. M. Gazeev, N. N. Pertsev, A. G. Gurbanov, E. R. Gobechiya, N. A. Yamnova, and N. V. Chukanov. Calcioolivine, γ-Ca2SiO4, an old and new mineral species. Geol. Ore Deposite, 2009, 51(8), 741-749. https://doi.org/10.1134/s1075701509080066

    Article  Google Scholar 

  385. C. Remy, D. Andrault, and M. Madon. High-temperature, high-pressure X-ray investigation of dicalcium silicate. J. Am. Ceram. Soc., 2005, 80(4), 851-860. https://doi.org/10.1111/j.1151-2916.1997.tb02914.x

    Article  Google Scholar 

  386. R. Widmer, F. Gfeller, and T. Armbruster. Structural and crystal chemical investigation of intermediate phases in the system Ca2SiO4–Ca3(PO4)2–CaNaPO4. J. Am. Ceram. Soc. 2015, 98(12), 3956-3965. https://doi.org/10.1111/jace.13850

    Article  CAS  Google Scholar 

  387. P. Β. Moore and T. Araki. The crystal structute of bredigite and the genealogy of some alkaline earth orthosilicates. Am. Mineral., 1976, 61, 74.

  388. P. Β. Moore and T. Araki. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest. Am. Mineral., 1972, 57, 1355.

  389. J. A. McGinnety. Redetermination of the structures of potassium sulphate and potassium chromate: The effect of electrostatic crystal forces upon observed bond lengths. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, 28(9), 2845-2852. https://doi.org/10.1107/s0567740872007022

    Article  CAS  Google Scholar 

  390. F. Gfeller, R. Widmer, B. Krüger, E. V. Galuskin, I. O. Galuskina, and T. Armbruster. The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. Eur. J. Mineral., 2015, 27(6), 755-769. https://doi.org/10.1127/ejm/2015/0027-2476

    Article  CAS  Google Scholar 

  391. S. V. Rashchenko, Y. V. Seryotkin, E. V. Sokol, and S. N. Kokh. Incommensurately modulated crystal structure of flamite - natural analogue of αH-Ca2SiO4. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2019, 75(6), 1137-1143. https://doi.org/10.1107/s2052520619013623

    Article  CAS  Google Scholar 

  392. E. V. Sokol, Y. V. Seryotkin, S. N. Kokh, Y. Vapnik, E. N. Nigmatulina, S. V. Goryainov, E. V. Belogub, and V. V. Sharygin. Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral. Mag., 2015, 79(3), 583-596. https://doi.org/10.1180/minmag.2015.079.3.05

    Article  Google Scholar 

  393. K. Fukuda, I. Maki, S. Ito, and T. Miyake. Structural change in phosphorus-bearing dicalcium silicates. J. Ceram. Soc. Japan, 1997, 105(1218), 117-121. https://doi.org/10.2109/jcersj.105.117

    Article  CAS  Google Scholar 

  394. K. Fukuda, I. Maki, S. Ito, H. Yoshida, and K. Aoki. Structure and microtexture changes in phosphorous-bearing Ca2SiO4 solid solutions. J. Am. Ceram. Soc., 1994, 77(10), 2615-2619. https://doi.org/10.1111/j.1151-2916.1994.tb04651.x

    Article  CAS  Google Scholar 

  395. V. Kahlenberg, L. Prosser, M. F. Salzmann, and C. Hejny. On the incorporation of strontium into the crystal structure of bredigite: Structural effects and phase transition. Mineral. Petrol., 2022, 116(2), 151-167. https://doi.org/10.1007/s00710-021-00771-x

    Article  CAS  Google Scholar 

  396. S. J. Mills, L. Bindi, M. Cadoni, A. R. Kampf, M. E. Ciriotti, and G. Ferraris. Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,□)18O38, a new member of the crichtonite group. Eur. J. Mineral., 2012, 24(6), 1061-1067. https://doi.org/10.1127/0935-1221/2012/0024-2243

    Article  CAS  Google Scholar 

  397. L. A. D. Menezes Filho, N. V. Chukanov, R. K. Rastsvetaeva, S. M. Aksenov, I. V. Pekov, M. L. S. C. Chaves, R. P. Richards, D. Atencio, P. R. G. Brandão, R. Scholz, K. Krambrock, R. L. Moreira, F. S. Guimarães, A. W. Romano, A. C. Persiano, L. C. A. de Oliveira, and J. D. Ardisson. Almeidaite, Pb(Mn,Y)Zn2(Ti,Fe3+)18O36(O,OH)2, a new crichtonite-group mineral, from Novo Horizonte, Bahia, Brazil. Mineral. Mag., 2015, 79(2), 269-283. https://doi.org/10.1180/minmag.2015.079.2.06

    Article  Google Scholar 

  398. D. V. Deyneko, D. A. Spassky, V. A. Morozov, S. M. Aksenov, S. P. Kubrin, M. S. Molokeev, and B. I. Lazoryak. Role of the Eu3+ distribution on the properties of β-Ca3(PO4)2 phosphors: Structural, luminescent, and 151 Eu Mössbauer spectroscopy study of Ca9.5–1.5xMgEux(PO4)7. Inorg. Chem., 2021, 60(6), 3961-3971. https://doi.org/10.1021/acs.inorgchem.0c03813

    Article  CAS  PubMed  Google Scholar 

  399. D. V. Deyneko, I. V. Nikiforov, B. I. Lazoryak, D. A. Spassky, I. I. Leonidov, S. Y. Stefanovich, D. A. Petrova, S. M. Aksenov, and P. C. Burns. Ca8MgSm1–х(PO4)7:xEu3+, promising red phosphors for WLED application. JAlloys Compd., 2019, 776, 897-903. https://doi.org/10.1016/j.jallcom.2018.10.317

    Article  CAS  Google Scholar 

  400. D. V. Deyneko, S. M. Aksenov, I. Nikiforov, S. Y. Stefanovich, and B. I. Lazoryak. Symmetry inhomogeneity of Ca9–xZnxEu(PO4)7 phosphor determined by second-harmonic generation and dielectric and photoluminescence spectroscopy. Cryst. Growth Des., 2020, 20(10), 6461-6468. https://doi.org/10.1021/acs.cgd.0c00637

    Article  CAS  Google Scholar 

  401. B. I. Lazoryak, S. M. Aksenov, S. Y. Stefanovich, N. G. Dorbakov, D. A. Belov, O. V. Baryshnikova, V. A. Morozov, M. S. Manylov, and Z. Lin. Ferroelectric crystal Ca9Yb(VO4)7 in the series of Ca9R(VO4)7 non-linear optical materials (R = REE, Bi, Y). J. Mater. Chem. C, 2017, 5(9), 2301-2310. https://doi.org/10.1039/c7tc00124j

    Article  CAS  Google Scholar 

  402. M. B. Kosmyna, P. V. Mateychenko, B. P. Nazarenko, A. N. Shekhovtsov, S. M. Aksenov, D. A. Spassky, A. V. Mosunov, and S. Y. Stefanovich. Novel laser crystals in Ca9Y(VO4)7–x(PO4)x mixed system. J. Alloys Compd., 2017, 708, 285-293. https://doi.org/10.1016/j.jallcom.2017.02.219

    Article  CAS  Google Scholar 

  403. R. M. Thompson, X. Xie, S. Zhai, R. T. Downs, and H. Yang. A comparison of the Ca3(PO4)2 and CaSiO3 systems, with a new structure refinement of tuite synthesized at 15 GPa and 1300 °C. Am. Mineral., 2013, 98(8/9), 1585-1592. https://doi.org/10.2138/am.2013.4435

    Article  CAS  Google Scholar 

  404. R. M. Thompson and R. T. Downs. Quantifying distortion from ideal closest-packing in a crystal structure with analysis and application. Acta Crystallogr., Sect. B: Struct. Sci., 2001, 57(2), 119-127. https://doi.org/10.1107/s0108768100016979

    Article  CAS  Google Scholar 

  405. K. T. Tait, M. C. Barkley, R. M. Thompson, M. J. Origlieri, S. H. Evans, C. T. Prewitt, and H. Yang. Bobdownsite, a new mineral species from Big Fish River, Yukon, Canada, and its structural relationship with whitlockite-type compounds. Can. Mineral., 2011, 49(4), 1065-1078. https://doi.org/10.3749/canmin.49.4.1065

    Article  CAS  Google Scholar 

  406. P. Bačík, R. Miyawaki, D. Atencio, F. Cámara, and J. Fridrichová. Nomenclature of the gadolinite supergroup. Eur. J. Mineral., 2017, 29(6), 1067-1082. https://doi.org/10.1127/ejm/2017/0029-2659

    Article  CAS  Google Scholar 

  407. F. Demartin, A. Minaglia, and C. M. Gramaccioli. Characterization of gadolinite-group minerals using crystallographic data only: The case of hingganite-(Y) from Cuasso al Monte, Italy. Can. Mineral., 2001, 39(4), 1105-1114. https://doi.org/10.2113/gscanmin.39.4.1105

    Article  CAS  Google Scholar 

  408. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, R. Kristiansen, I. V. Pekov, D. I. Belakovskiy, K. V. Van, Y. V. Bychkova, and S. N. Britvin. Crystal structure of the OH-dominant gadolinite-(Y) analogue (Y,Ca)2(Fe,□)Be2Si2O8(OH,O)2 from Heftetjern pegmatite, Norway. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2017, 73(5), 899-906. https://doi.org/10.1107/s2052520617006588

    Article  CAS  Google Scholar 

  409. E. L. Belokoneva and A. N. Goryunova. Electron density and chemical bonding in natural borosilicate datolite from precision X-ray diffraction data. Russ. J. Inorg. Chem., 1998, 43(12), 1915-1927. Russ. J. Inorg. Chem., 1998, 43, 1915.

  410. E. J. Baran. Review: Natural oxalates and their analogous synthetic complexes. J. Coord. Chem., 2014, 67(23/24), 3734-3768. https://doi.org/10.1080/00958972.2014.937340

    Article  CAS  Google Scholar 

  411. T. Echigo and M. Kimata. Crystal chemistry and genesis of organic minerals: A review of oxalate and polycyclic aromatic hydrocarbon minerals. Can. Mineral., 2010, 48min.48.5.1329

    Article  CAS  Google Scholar 

  412. O. E. Piro and E. J. Baran. Crystal chemistry of organic minerals - salts of organic acids: The synthetic approach. Crystallogr. Rev., 2018, 24(3), 149-175. https://doi.org/10.1080/0889311x.2018.1445239

    Article  CAS  Google Scholar 

  413. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, K. A. Lyssenko, D. I. Belakovskiy, G. Färber, G. Möhn, and K. V. Van. Antipinite, KNa3Cu2(C2O4)4, a new mineral species from a guano deposit at Pabellón de Pica, Chile. Mineral. Mag., 2015, 79(5), 1111-1121. https://doi.org/10.1180/minmag.2015.079.5.07

    Article  Google Scholar 

  414. P. C. Burns and F. C. Hawthorne. Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. Can. Mineral., 1996, 34, 1089.

  415. R. M. Clarke and I. R. Williams. Moolooite, a naturally occurring hydrated copper oxalate from Western Australia. Mineral. Mag., 1986, 50(356), 295-298. https://doi.org/10.1180/minmag.1986.050.356.15

    Article  CAS  Google Scholar 

  416. A. Gleizes, F. Maury, and J. Galy. Crystal structure and magnetism of sodium bis(oxalato)cuprate(II)dihydrate, Na2Cu(C2O4)2·2H2O. A deductive proposal for the structure of copper oxalate, CuC2O4·xH2O (0 ≤ x ≤ 1). Inorg. Chem., 1980, 19(7), 2074-2078. https://doi.org/10.1021/ic50209a048

    Article  CAS  Google Scholar 

  417. K. Dornberger-Schiff. Lehrgang über OD-Strukturen. Berlin, Germany: Akademie, 1966.

  418. C. Biagioni, S. Merlino, and E. Bonaccorsi. The tobermorite supergroup: a new nomenclature. Mineral. Mag., 2015, 79(2), 485-495. https://doi.org/10.1180/minmag.2015.079.2.22

    Article  Google Scholar 

  419. I. V. Pekov, N. V. Zubkova, N. V. Chukanov, S. Merlino, V. O. Yapaskurt, D. I. Belakovskiy, A. B. Loskutov, E. A. Novgorodova, S. A. Vozchikova, S. N. Britvin, and D. Yu. Pushcharovsky. Paratobermorite, Ca4(Al0.5Si0.5)2Si4O16(OH)·2H2O·(Ca·3H2O), a new tobermorite-supergroup mineral with a novel topological type of the microporous crystal structure. Am. Mineral., 2022, 107, 2272. https://doi.org/10.2138/am-2022-8284

    Article  Google Scholar 

  420. M. Polisi, M. G. Vezzalini, E. Bonaccorsi, C. Biagioni, and R. Arletti. High pressure behaviour of tobermorite supergroup minerals: An in situ synchrotron X-ray powder diffraction study. Cem. Concr. Res., 2020, 138, 106249. https://doi.org/10.1016/j.cemconres.2020.106249

    Article  CAS  Google Scholar 

  421. E. Makovicky. Twinning of aragonite - the OD approach. Mineral. Petrol., 2012, 106(1/2), 19-24. https://doi.org/10.1007/s00710-012-0219-5

    Article  CAS  Google Scholar 

  422. E. Bonaccorsi, G. Ferraris, and S. Merlino. Crystal structure of 2M and 1A polytypes of balangeroite. Z. Kristallogr. - Cryst. Mater., 2012, 227(7), 460-467. https://doi.org/10.1524/zkri.2012.1498

    Article  CAS  Google Scholar 

  423. S. Merlino, C. Biagioni, and P. Orlandi. The crystal structure of grumiplucite: Its OD character and structural relationships. Rend. Accad. Naz. Lincei, 2013, 24(1), 47-52. https://doi.org/10.1007/s12210-012-0213-1

    Article  Google Scholar 

  424. E. Bonaccorsi, S. Merlino, and H. F. W. Taylor. The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O. Cem. Concr. Res., 2004, 34(9), 1481-1488. https://doi.org/10.1016/j.cemconres.2003.12.033

    Article  CAS  Google Scholar 

  425. J. Hybler and S. Ďurovič. Kermesite, Sb2S2O: Crystal structure revision and order–disorder interpretation. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2013, 69(6), 570-583. https://doi.org/10.1107/s2052519213024238

    Article  CAS  Google Scholar 

  426. E. Makovicky and S. Merlino. OD (order-disorder) character of the crystal structure of maucherite Ni8As11. Eur. J. Mineral., 2009, 21(4), 855-862. https://doi.org/10.1127/0935-1221/2009/0021-1960

    Article  CAS  Google Scholar 

  427. A. R. Kampf, S. J. Mills, S. Merlino, Marco Pasero, A. M. McDonald, W. B. Wray, and J. R. Hindman. Whelanite, Cu2Ca6[Si6O17(OH)](CO3)(OH)3(H2O)2, an (old) new mineral from the Bawana mine, Milford, Utah. Am. Mineral., 2012, 97, 2007. https://doi.org/10.2138/am.2012.4181

    Article  CAS  Google Scholar 

  428. B. Stöger, M. Weil, and J. Skibsted. The crystal structure of BaPO3F revisited - a combined X-ray diffraction and solid-state 19F, 31P MAS NMR study. Dalton Trans., 2013, 42(32), 11672. https://doi.org/10.1039/c3dt50373a

    Article  CAS  PubMed  Google Scholar 

  429. B. Stöger and M. Dušek. Complex polymorphism and polytypism of potassium metaarsenate, KAsO3. Cryst. Growth Des., 2014, 14(9), 4640-4657. https://doi.org/10.1021/cg500733w

    Article  CAS  Google Scholar 

  430. M. Cadoni, A. Bloise, G. Ferraris, and S. Merlino. Order–disorder character and twinning in the structure of a new synthetic titanosilicate: (Ba,Sr)4Ti6Si4O24·H2O. Acta Crystallogr., Sect. B: Struct. Sci., 2008, 64(6), 669-675. https://doi.org/10.1107/s0108768108032631

    Article  CAS  Google Scholar 

  431. C. Larvor, B. Stöger, and M. Weil. The allotwinning of KCa3Te5O12Cl3: An OD interpretation. Z. Kristallogr. - Cryst. Mater., 2018, 233(12), 849-859. https://doi.org/10.1515/zkri-2018-2071

    Article  CAS  Google Scholar 

  432. S. Merlino, E. Bonaccorsi, A. I. Grabezhev, A. E. Zadov, N. N. Pertsev, and N. V. Chukanov. Fukalite: An example of an OD structure with two-dimensional disorder. Am. Mineral., 2009, 94(2/3), 323-333. https://doi.org/10.2138/am.2009.3049

    Article  CAS  Google Scholar 

  433. I. V. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, and S. Merlino. Essential features of the polytypic charoite-96 structure compared to charoite-90. Mineral. Mag., 2011, 75(6), 2833-2846. https://doi.org/10.1180/minmag.2011.075.6.2833

    Article  CAS  Google Scholar 

  434. I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, and T. Weirich. The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineral. Mag., 2010, 74(1), 159-177. https://doi.org/10.1180/minag.2010.074.1.159

  435. E. L. Belokoneva. Topology–symmetry analysis of the similarity and distinctions between the α and βiications of Bi2[B8O15]. Prediction of structures. Crystallogr. Rep., 2015, 60(4), 480-483. https://doi.org/10.1134/s1063774515040070

    Article  CAS  Google Scholar 

  436. E. L. Belokoneva, O. V. Dimitrova, and N. N. Mochenova. Synthetic Na,Sr-carbonatoborate with a new type of penaborate layer: The OD nature of the structure and its correlation with volkovskite, veatchites, and hilgardites. Crystallogr. Rep., 2009, 54(1), 6-12. https://doi.org/10.1134/s1063774509010027

    Article  CAS  Google Scholar 

  437. E. L. Belokoneva, T. A. Eremina, O. V. Dimitrova, and A. S. Volkov. New lead silicates: structures and topology and symmetry analysis. Crystallogr. Rep., 2021, 66(1), 95-104. https://doi.org/10.1134/s1063774521010028

    Article  CAS  Google Scholar 

  438. E. L. Belokoneva, A. P. Topnikova, O. V. Dimitrova, and A. S. Volkov. KNa2Tm[Si8O19]·4H2O, a new layered siiate related to rhodezite-shlykovite-delhayelite-umbrianite-guenterblassite-hilleshaymite: Topology-symetry analysis of the OD-family and structure prediction. Crystallogr. Rep., 2014, 59(4), 513-522. https://doi.org/10.1134/s1063774514040051

    Article  CAS  Google Scholar 

  439. E. L. Belokoneva. Symmetry and topological analysis of the OD nenadkevichite-labuntsovite-zorite family. Crystallogr. Rep., 2005, 50(1), 13-19. https://doi.org/10.1134/1.1857238

    Article  CAS  Google Scholar 

  440. O. Reutova, E. Belokoneva, A. Volkov, and O. Dimitrova. Structure-properties relations in two iodate families studied by topology-symmetry analysis of OD theory. Symmetry, 2021, 13(8), 1477. https://doi.org/10.3390/sym13081477

    Article  CAS  Google Scholar 

  441. O. Reutova, E. Belokoneva, A. Volkov, O. Dimitrova, and S. Stefanovich. Two new Rb3Sc(IO3)6 polytypes in proposed nonlinear optical family A3M(IO3)6der–disorder and structure–properties relation. Symmetry, 2022, 14(8), 1699. https://doi.org/10.3390/sym14081699

    Article  CAS  Google Scholar 

  442. E. L. Belokoneva, A. S. Karamysheva, O. V. Dimitrova, and A. S. Volkov. Synthesis, crystal structure, and topology–symmetry analysis of a new modification of NaIn[IO3]4. Crystallogr. Rep., 2018, 63(1), 52-57. https://doi.org/10.1134/s1063774518010029

    Article  CAS  Google Scholar 

  443. E. Belokoneva, O. Reutova, A. Volkov, O. Dimitrova, and S. Stefanovich. New modification of polar nonlinear optical iodate fluoride PbF(IO3), the family MX(IO3), M = Bi, Ba, Pb, X = O, F, (OH) related to aurivillius phases and similar iodates. Symmetry, 2022, 15(1), 100. https://doi.org/10.3390/sym15010100

    Article  CAS  Google Scholar 

  444. E. L. Belokoneva and T. Mori. Topology and symmetry analysis of rare earth borocarbides structural family, analogy to hexaferrites and relation to properties. Cryst. Res. Technol., 2009, 44(1), 19-24. https://doi.org/10.1002/crat.200800395

    Article  CAS  Google Scholar 

  445. E. L. Belokoneva and I.K. Shagivaleeva. Topology and symmetry analysis of the Sr2VO(VO4)2 family exhibitting magnetic properties and prediction of structures with different orderings of vanadyl bonds. Crystallogr. Rep., 2012, 57(3), 369-374. https://doi.org/10.1134/s1063774512030029

    Article  CAS  Google Scholar 

  446. E. L. Belokoneva. Brownmillerites as members of the unified OD family with two-dimensional disorder: A topology and symmetry analysis, the prediction of structures, and the properties of crystals. Crystallogr. Rep., 2011, 56(6), 962-969. https://doi.org/10.1134/s1063774511030035

    Article  CAS  Google Scholar 

  447. A. Topnikova, E. Belokoneva, O. Dimitrova, A. Volkov, and D. Deyneko. Rb1.66Cs1.34Tb[Si5.43Ge0.57O15]·H2O, a new member of the od-family of natural and synthetic layered silicates: Topology-symmetry analysis and structure prediction. Minerals, 2021, 11(4), 395. https://doi.org/10.3390/min11040395

    Article  CAS  Google Scholar 

  448. S. Nicol, J. Chen, M. I. Pownceby, and N. A. S. Webster. A review of the chemistry, structure and formation conditions of silico-ferrite of calcium and aluminum (′SFCA′) phases. ISIJ Int., 2018, 58(12), 2157-2172. https://doi.org/10.2355/isijinternational.isijint-2018-203

    Article  CAS  Google Scholar 

  449. J. D. G. Hamilton, B. F. Hoskins, W. G. Mumme, W. E. Borbidge, and M. A. Montague. The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1Fe8.3O20 (SFCA): Solid solution limits and selected phase relationships of SFCA in the SiO2–FeO3–CaO (–Al2O3) system. Neues Jahrb. Mineral., Abh., 1989, 161(1), 1-26.

  450. B. B. Zvyagin and S. Merlino. The pyroxene-spinel polysomatic system. Z. Kristallogr. - Cryst. Mater., 2003, 218(3), 210-220. https://doi.org/10.1524/zkri.218.3.210.20747

    Article  CAS  Google Scholar 

  451. S. Merlino and B. B. Zvyagin. Modular features of sapphirine-type structures. Z. Kristallogr. - Cryst. Mater., 1998, 213(10), 513-521. https://doi.org/10.1524/zkri.1998.213.10.513

    Article  CAS  Google Scholar 

  452. W. G. Mumme, J. M. F. Clout, and R. W. Gable. The crystal structure of SFCA-I, Ca3.18Fe3+14.66Al1.34Fe2+0.82O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04Al1.74Fe2+0.16Si0.6O20. Neues Jahrb. Mineral., Abh., 1998, 173(1), 93-117. https://doi.org/10.1127/njma/173/1998/93

    Article  CAS  Google Scholar 

  453. N. A. S. Webster, M. I. Pownceby, and N. C. Wilson. Exploring the composition and structure of triclinic SFCA-I. ISIJ Int., 2022, 62(8), 1618-1623. https://doi.org/10.2355/isijinternational.isijint-2021-577

    Article  CAS  Google Scholar 

  454. A. V. Arakcheeva, O. G. Karpinskii, and V. Y. Lyadova. Crystal structure of a CaFe3AlO7 aluminum–calcium ferrite of variable composition. Sov. Phys. - Crystallogr., 1991, 36, 332-336.

  455. A. V. Arakcheeva and I. T. Ivanov. Crystal structure of disomatic phase of variable composition CaAl(Al, V, MI)2(V, MII)(Si, Al)2O10, where MI = Mg, MII = Al, Fe, Mn, Ti, Mg; its polytypic modifications and structural homologs. Crystallogr. Rep., 1993, 505-515.

  456. K. Zöll, V. Kahlenberg, H. Krüger, and P. Tropper. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO–MgO–Fe2O3–Al2O3. JSolid State Chem., 2018, 258, 307-319. https://doi.org/10.1016/j.jssc.2017.09.006

    Article  CAS  Google Scholar 

  457. K. Zöll, T. Manninger, V. Kahlenberg, H. Krüger, and P. Tropper. Investigations on the crystal structure and the stability field of FCAM-I (Ca3MgAl6Fe10O28), an iso-structure to SFCA-I. Metall. Mater. Trans. B, 2017, 48(4), 2207-2221. https://doi.org/10.1007/s11663-017-0988-7

    Article  CAS  Google Scholar 

  458. D. C. Liles, J. P. R. de Villiers, and V. Kahlenberg. Refinement of iron ore sinter phases: a silico-ferrite of calcium and aluminium (SFCA) and an Al-free SFC, and the effect on phase quantification by X-ray diffracttion. Mineral. Petrol., 2016, 110(1), 141-147. https://doi.org/10.1007/s00710-015-0411-5

    Article  CAS  Google Scholar 

  459. V. Kahlenberg, H. Krüger, and M. Tribus. Structural systematics of SFCA-I type solid-solutions in the system CaO–Fe2O3–FeO–Al2O3. Phys. Chem. Miner., 2021, 48(7), 25. https://doi.org/10.1007/s00269-021-01148-4

    Article  CAS  Google Scholar 

  460. V. Kahlenberg, H. Krüger, M. Tribus, and B. Anwander. SFCA-II type Ca2.46Fe3+8.57 Fe2+0.52Al5.45O24 - an improved structural model for an iron-ore sinter phase. Mineral. Petrol., 2021, 115(1), 137-147. https://doi.org/10.1007/s00710-020-00730-y

    Article  CAS  Google Scholar 

  461. V. Kahlenberg, H. Krüger, and V. S. Goettgens. Structural elucidation of triclinic and monoclinic SFCA-III - killing two birds with one stone. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2019, 75(6), 1126-1136. https://doi.org/10.1107/s2052520619014380

    Article  CAS  Google Scholar 

  462. E. Bonaccorsi, S. Merlino, and M. Pasero. Rhönite: structural and microstructural features, crystal chemistry and polysomatic relationships. Eur. J. Mineral., 1990, 2(2), 203-218. https://doi.org/10.1127/ejm/2/2/0203

    Article  CAS  Google Scholar 

  463. N. V. Shchipalkina, I. V. Pekov, N. V. Chukanov, N. N. Koshlyakova, B. Ternes, and W. Schüller. Crystal chemistry of dorrite from the Eifel volcanic region, Germany, and chemical variations in the khesinite-dorrite-rhönite-kuratite solid-solution system. Mineral. Petrol., 2019, 113(2), 249-259. https://doi.org/10.1007/s00710-018-0645-0

    Article  CAS  Google Scholar 

  464. I. O. Galuskina, E. V. Galuskin, A. S. Pakhomova, R. Widmer, T. Armbruster, B. Krüger, E. S. Grew, Y. Vapnik, P. Dzierażanowski, and M. Murashko. Khesinite, Ca4Mg2Fe3+10O4[(Fe3+10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel– natural analogue of the SFCA phase. Eur. J. Mineral., 2017, 29(1), 101-116. https://doi.org/10.1127/ejm/2017/0029-2589

    Article  CAS  Google Scholar 

  465. A. A. Zolotarev, S. V. Krivovichev, M. S. Avdontceva, E. S. Zhitova, N. V. Shchipalkina, and I. V. Pekov. Crystal chemistry of “malakhovite”, an anthropogenic analog of khesinite from burnt dumps of the Chelyabinsk coal basin (South Urals). Crystallogr. Rep., 2021, 66(1), 66-75. https://doi.org/10.1134/s106377452101020x

    Article  CAS  Google Scholar 

  466. E. S. Grew, U. Hålenius, M. Pasero, and J. Barbier. Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup). Mineral. Mag., 2008, 72(4), 839-876. https://doi.org/10.1180/minmag.2008.072.4.839

    Article  CAS  Google Scholar 

  467. C. Ma, A. N. Krot, and K. Nagashima. Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from the Acfer 214 CH carbonaceous chondrite: A new refractory phase from the solar nebula. Am. Mineral., 2017, 102(7), 1556-1560. https://doi.org/10.2138/am-2017-6032

    Article  Google Scholar 

  468. J. Barbier. Crystal structures of sapphirine and surinamite analogues in the MgO–Ga2O3–GeO2 system. Eur. J. Mineral., 1998, 10(6), 1283-1294. https://doi.org/10.1127/ejm/10/6/1283

    Article  CAS  Google Scholar 

  469. B. G. Hyde, T. J. White, M. O′Keeffe, and A. W. S. Johnson. Structures related to those of spinel and the β-phase, and a possible mechanism for the transformation olivine ↔ spinel. Z. Kristallogr. - Cryst. Mater., 1982, 160(1-4), 53-62. https://doi.org/10.1524/zkri.1982.160.14.53

    Article  CAS  Google Scholar 

  470. W. G. Mumme and R. W. Gable. Crystal structures of monoclinic variants of two SFCA structure-types containing significant Fe2+: crystal structure of monoclinic SFCA-II, Ca2.6Fe3+8.0Fe2+3.4Al4O24; and proposed crystal structure of monoclinic SFCA-I, ideally, Ca2Fe2+8Fe3+8Al4O28. Neues Jahrb. Mineral., Abh., 2018, 195(2), 89-100. https://doi.org/10.1127/njma/2018/0090

    Article  CAS  Google Scholar 

  471. A. V. Arakcheeva. Fragmentary analysis of crystal structures of the Al, Ca-ferrite phase (Fe, Ca)4(Fe, Al)2CaFe(Al, Fe)2O14. J. Struct. Chem., 1994, 35(5), 647-657. https://doi.org/10.1007/bf02578334

    Article  Google Scholar 

  472. D. Zagorac, J. C. Schön, J. Zagorac, and M. Jansen. Theoretical investigations of novel zinc oxide polytypes and in-depth study of their electronic properties. RSC Adv., 2015, 5(33), 25929-25935. https://doi.org/10.1039/c4ra16574h

    Article  CAS  Google Scholar 

  473. I. S. Popov, A. S. Vorokh, and A. N. Enyashin. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study. Chem. Phys., 2018, 510, 70-76. https://doi.org/10.1016/j.chemphys.2018.04.017

    Article  CAS  Google Scholar 

  474. V. Heine, C. Cheng, C. E. Engel, and R. J. Needs. The origin of polytypes in SiC and ZnS. MRS Proc., 1992, 242, 507. https://doi.org/10.1557/proc-242-507

    Article  CAS  Google Scholar 

  475. F. Boutaiba, A. Belabbes, M. Ferhat, and F. Bechstedt. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study. Phys. Rev. B, 2014, 89(24), 245308. https://doi.org/10.1103/physrevb.89.245308

    Article  Google Scholar 

  476. M. B. Smirnov, A. O. Koshkin, S. V. Karpov, B. V. Novikov, A. N. Smirnov, I. V. Shtrohm, G. E. Cirlin, A. D. Bouravleuv, and Y. B. Samsonenko. Computer simulation of the structure and Raman spectra of GaAs polytypes. Phys. Solid State, 2013, 55(6), 1220-1230. https://doi.org/10.1134/s1063783413060309

    Article  CAS  Google Scholar 

  477. Y. C. Cheng, H. T. Chen, X. X. Li, X. L. Wu, J. Zhu, S. H. Li, and P. K. Chu. Optical and vibrational properties of 2H-, 4H-, and 6H-AlN: First-principle calculations. J. Appl. Phys., 2009, 105(8). https://doi.org/10.1063/1.3095511

    Article  Google Scholar 

  478. E. Monroy, M. Hermann, E. Sarigiannidou, T. Andreev, P. Holliger, S. Monnoye, H. Mank, B. Daudin, and M. Eickhoff. Polytype transition of N-face GaN:Mg from wurtzite to zinc-blende. J. Appl. Phys., 2004, 96(7), 3709-3715. https://doi.org/10.1063/1.1787142

    Article  CAS  Google Scholar 

  479. P. R. Prager. Polytypism in silver iodide. Acta Crystallogr., Sect. A, 1974, 30(3), 369-373. https://doi.org/10.1107/s0567739474000842

    Article  CAS  Google Scholar 

  480. Y.-G. Guo, J.-S. Lee, Y.-S. Hu, and J. Maier. AgI nanoplates in unusual 7H/9R structures. J. Electrochem. Soc., 2007, 154(9), K51. https://doi.org/10.1149/1.2750514

    Article  CAS  Google Scholar 

  481. S. Chen, A. Walsh, Y. Luo, J.-H. Yang, X. G. Gong, and S.-H. Wei. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B, 2010, 82(19), 195203. https://doi.org/10.1103/physrevb.82.195203

    Article  Google Scholar 

  482. C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger. Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B, 1992, 46(16), 10086-10097. https://doi.org/10.1103/physrevb.46.10086

    Article  CAS  Google Scholar 

  483. E. Makovicky. Twinning of tetrahedrite - OD approach. Minerals, 2021, 11(2), 170. https://doi.org/10.3390/min11020170

    Article  CAS  Google Scholar 

  484. C. Biagioni, L. L. George, N. J. Cook, E. Makovicky, Y. Moëlo, M. Pasero, J. Sejkora, C. J. Stanley, M. D. Welch, and F. Bosi. The tetrahedrite group: Nomenclature and classification. Am. Mineral., 2020, 105(1), 109-122. https://doi.org/10.2138/am-2020-7128

    Article  Google Scholar 

  485. S. Ďurovič. The crystal structure of γ-Hg3S2Cl2. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, 24(12), 1661-1670. https://doi.org/10.1107/s0567740868004814

    Article  Google Scholar 

  486. D. O. Charkin, S. N. Volkov, V. Y. Grishaev, V. A. Dolgikh, A. N. Kuznetsov, D. V. Deyneko, K. A. Lyssenko, and S. M. Aksenov. A new family of rare earth - strontium tellurite chlorides, SrLn4(TeO3)4Cl6 (Ln = Ce, Nd, Sm): Synthesis, crystal structures, possible polytypism, and crystal-chemical relationships. J. Solid State Chem., 2023, 320, 123822. https://doi.org/10.1016/j.jssc.2022.123822

    Article  CAS  Google Scholar 

  487. D. O. Charkin, V. A. Dolgikh, T. A. Omelchenko, Y. A. Vaitieva, S. N. Volkov, D. V. Deyneko, and S. M. Aksenov. Symmetry analysis of the complex polytypism of layered rare-earth tellurites and related selenites: The case of introducing transition metals. Symmetry, 2022, 14(10), 2087. https://doi.org/10.3390/sym14102087

    Article  CAS  Google Scholar 

  488. D. O. Charkin, S. N. Volkov, V. A. Dolgikh, and S. M. Aksenov. Potassium rare-earth tellurite chlorides: A new branch from the old root. Solid State Sci., 2022, 129, 106895. https://doi.org/10.1016/j.solidstatesciences.2022.106895

    Article  CAS  Google Scholar 

  489. S. Zitzer and T. Schleid. Das erste Alkalimetall-lanthanoid(III)-iodid-oxotellurat(IV): Na2Lu3I3[TeO3]4. Z. Anorg. Allg. Chem., 2010, 636(6), 1050-1055. https://doi.org/10.1002/zaac.201000014

    Article  CAS  Google Scholar 

  490. D. O. Charkin, S. Zitzer, S. Greiner, S. G. Dorofeev, A. V. Olenev, P. S. Berdonosov, T. Schleid, and V. A. Dolgikh. Synthesis, structures, and luminescent properties of sodium rare-earth metal(III) chloride oxotellurates(IV), Na2Ln3Cl3[TeO3]4 (Ln = Sm, Eu, Gd, Tb, Dy, and Ho). Z. Anorg. Allg. Chem., 2017, 643(21), 1654-1660. https://doi.org/10.1002/zaac.201700227

    Article  CAS  Google Scholar 

  491. S. Zitzer, F. Schleifenbaum, and T. Schleid. Na2Y3Cl3[TeO3]4: Synthesis, crystal structure and spectroscopic properties of the bulk material and its luminescent Eu3+-doped samples. Z. Naturforsch., B, 2014, 69(2), 150-158. https://doi.org/10.5560/znb.2014-3274

    Article  CAS  Google Scholar 

  492. S. Merlino and E. Makovicky. OD (order-disorder) character of the crystal structure of godlevskite Ni9S8. Eur. J. Mineral., 2009, 21(4), 863-869. https://doi.org/10.1127/0935-1221/2009/0021-1961

    Article  CAS  Google Scholar 

  493. P. Orlandi, C. Biagioni, L. Bindi, and S. Merlino. Nuragheite, Th(MoO4)2·H2O, the second natural thorium molybdate and its relationships to ichnusaite and synthetic Th(MoO4)2. Am. Mineral., 2015, 100(1), 267-273. https://doi.org/10.2138/am-2015-5024

    Article  Google Scholar 

  494. B. Stöger, M. Weil, E. Zobetz, and G. Giester. Polymorphism of CaTeO3 and solid solutions CaxSr1–xTeO3. Acta Crystallogr., Sect. B: Struct. Sci., 2009, 65(2), 167-181. https://doi.org/10.1107/s0108768109002997

    Article  Google Scholar 

  495. M. Rotter and B. Stöger. RbSbO3: A simple structure with complex polytypism. Cryst. Res. Technol., 2020, 55(5), 1900164. https://doi.org/10.1002/crat.201900164

    Article  Google Scholar 

  496. P. Hans, B. Stöger, M. Weil, and E. Zobetz. Structure of the mixed-metal carbonate KAgCO3 revisited: Order–disorder (OD) polytypism and allotwinning. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2015, 71(2), 194-202. https://doi.org/10.1107/s2052520615004138

    Article  CAS  Google Scholar 

  497. B. Stöger, M. Weil, O. P. Missen, and S. J. Mills. The order-disorder (OD) polytypism of [Cu2ZnTeO4]2+[SO4·H2O]2–. Cryst. Res. Technol., 2020, 55(5), 1900182. https://doi.org/10.1002/crat.201900182

    Article  Google Scholar 

  498. B. Stöger, H. Krüger, and M. Weil. Mg(H2O)2[TeO2(OH)4]: A polytypic structure with a two-mode disordered stacking arrangement. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2021, 77(4), 605-623. https://doi.org/10.1107/s2052520621006223

    Article  CAS  Google Scholar 

  499. F. Eder, B. Stöger, and M. Weil. Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11. Z. Kristallogr. - Cryst. Mater., 2022, 237(8/9), 329-341.

  500. J. Hybler and S. Ďurovič. The OD interpretation of the crystal structure of kettnerite CaBiOFCO3. Acta Crystallogr., Sect. A: Found. Crystallogr., 2009, 65(6), 501-511. https://doi.org/10.1107/s0108767309037702

    Article  CAS  Google Scholar 

  501. E. Makovicky and S. Merlino. Order-disorder twinning of malachite. Can. Mineral., 2019, 57(4), 475-488. https://doi.org/10.3749/canmin.1900007

    Article  CAS  Google Scholar 

  502. B. Pałosz. Reasons for polytypism of crystals of the type MX2. I. Polytypism and structure behaviour of inorganic crystals: General problems. Phys. Status Solidi A, 1983, 77(1), 11-34. https://doi.org/10.1002/pssa.2210770102

    Article  Google Scholar 

  503. B. Pałosz. Reasons for polytypism of crystals of the type MX2. II. Clasification of faults and structural series of polytypes; conditions of polytypic growth of CdI2, PbI2, CdBr2, SnS2, SnSe2 and Ti1.2S2. Phys. Status Solidi A, 1983, 80(1), 11-41. https://doi.org/10.1002/pssa.2210800102

    Article  Google Scholar 

  504. E. H. Wolpert, S. J. Cassidy, and A. L. Goodwin. On the polytypism of layered MX2 materials. arXiv.org, e-Print Arch., Condens. Matter, 2023, 23(02), 01016. https://doi.org/10.48550/arXiv.2302.01016

  505. V. A. Drits, S. Guggenheim, B. B. Zviagina, and T. Kogure. Structures of the 2:1 layers of pyrophyllite and talc. Clays Clay Miner., 2012, 60(6), 574-587. https://doi.org/10.1346/ccmn.2012.0600603

    Article  CAS  Google Scholar 

  506. H. Zhang, P. Zarzycki, B. Gilbert, and J. F. Banfield. Polytypism in semi-disordered lizardite and amesite by low-dose HAADF-STEM. Am. Mineral., 2022, 107(2), 221-232. https://doi.org/10.2138/am-2021-7867

    Article  Google Scholar 

  507. J. F. Banfield, S. W. Bailey, W. W. Barker, and R. C. Smith. Complex polytypism; relationships between serpentine structural characteristics and deformation. Am. Mineral., 1995, 80(11/12), 1116-1131. https://doi.org/10.2138/am-1995-11-1203

    Article  CAS  Google Scholar 

  508. K. Dornberger-Schiff. OD-interpretation of kaolinite-type structures - II: The regular polytypes (MDO-polytypes) and their derivation. Clays Clay Miner., 1975, 23(3), 231-246. https://doi.org/10.1346/ccmn.1975.0230311

    Article  Google Scholar 

  509. K. Dornberger-Schiff. OD-Interpretation of kaolinite-type structures - I: Symmetry of kaolinite packets and their stacking possibilities. Clays Clay Miner., 1975, 23(3), 219-229. https://doi.org/10.1346/ccmn.1975.0230310

    Article  CAS  Google Scholar 

  510. S. Ďurovič. Notion of ′packets′ in the theory of OD structures of M > 1 kinds of layers, examples: kaolinites and MoS2. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1974, 30(1), 76-78. https://doi.org/10.1107/s0567740874002238

    Article  Google Scholar 

  511. J. Hybler, J. Sejkora, and V. Venclík. Polytypism of cronstedtite from Pohled, Czech Republic. Eur. J. Mineral., 2016, 28(4), 765-775. https://doi.org/10.1127/ejm/2016/0028-2532

    Article  CAS  Google Scholar 

  512. J. Hybler, M. Števko, and J. Sejkora. Polytypism of cronstedtite from Nižná Slaná, Slovakia. Eur. J. Mineral., 2017, 29(1), 91-99. https://doi.org/10.1127/ejm/2017/0029-2582

    Article  CAS  Google Scholar 

  513. J. Hybler, Z. Dolníček, J. Sejkora, and M. Števko. Polytypism of cronstedtite from Ouedi Beht, El Hammam, Morocco. Clays Clay Miner., 2021, 69(6), 702-734. https://doi.org/10.1007/s42860-021-00157-2

    Article  CAS  Google Scholar 

  514. J. Hybler, M. Klementová, M. Jarošová, I. Pignatelli, R. Mosser-Ruck, and S. Ďurovič. Polytype identification in trioctahedral 1:1 layer silicates using electron diffraction with application to a chronstedtite that was synthesized using metallic iron-clay interactions. Clays Clay Miner., 2018, 66(4), 379-402. https://doi.org/10.1346/ccmn.2018.064106

    Article  CAS  Google Scholar 

  515. J. Hybler. Crystal structure of cronstedtite-6T2, a non-MDO polytype. Eur. J. Mineral., 2016, 28(4), 777-788. https://doi.org/10.1127/ejm/2016/0028-2541

    Article  CAS  Google Scholar 

  516. S.W. Bailey. Polytypism of trioctahedral 1:1 layer silicates. Clays Clay Miner., 1969, 17(6), 355-371. https://doi.org/10.1346/ccmn.1969.0170605

    Article  CAS  Google Scholar 

  517. O. P. Missen, S. J. Mills, S. Canossa, J. Hadermann, G. Nénert, M. Weil, E. Libowitzky, R. M. Housley, W. Artner, A. R. Kampf, M. S. Rumsey, J. Spratt, K. Momma, and M. A. Dunstan. Polytypism in mcalpineite: A study of natural and synthetic Cu3TeO6. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2022, 78(1), 20-32. https://doi.org/10.1107/s2052520621013032

    Article  CAS  Google Scholar 

  518. P. S. Berdonosov, L. Akselrud, Y. Prots, A. M. Abakumov, P. F. Smet, D. Poelman, G. Van Tendeloo, and V. A. Dolgikh. Cs7Nd11(SeO3)12Cl16 : First noncentrosymmetric structure among alkaline-metal lanthanide selenite halides. Inorg. Chem., 2013, 52(7), 3611-3619. https://doi.org/10.1021/ic301442f

    Article  CAS  PubMed  Google Scholar 

  519. P. S. Berdonosov, V. A. Dolgikh, P. Schmidt, and M. Ruck. In: Proc. IV National Crystal Chemical Conference, Chernogolovka, June 26-30, 2006. Moscow, Russia: MAKS, 2006, 192.

  520. M. S. Wickleder. Inorganic lanthanide compounds with complex anions. Chem. Rev., 2002, 102(6), 2011-2088. https://doi.org/10.1021/cr010308o

    Article  CAS  PubMed  Google Scholar 

  521. J.-G. Mao, H.-L. Jiang, and F. Kong. Structures and properties of functional metal selenites and tellurites. Inorg. Chem., 2008, 47(19), 8498-8510. https://doi.org/10.1021/ic8005629

    Article  CAS  PubMed  Google Scholar 

  522. A. F. Murtazoev, P. S. Berdonosov, S. M. Aksenov, A. N. Kuznetsov, V. A. Dolgikh, Y. V. Nelyubina, and S. Merlino. Polytypism of Ln(SeO3)(HSeO3)·2H2O compounds: Synthesis and crystal structure of the first monoclinic modification of Nd(SeO3)(HSeO3)·2H2O, DFT calculations and order/disorder description. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2023, 79(2), 176-183. https://doi.org/10.1107/s2052520622012227

    Article  CAS  Google Scholar 

  523. M. Koskenlinna, J. Valkonen, S. K. Ratkje, M. Pouchard, P. Hagenmuller, and A. F. Andresen. The crystal structure of manganese(II) selenite monodeuterate. Acta Chem. Scand., 1977, 31a, 752-754. https://doi.org/10.3891/acta.chem.scand.31a-0752

    Article  Google Scholar 

  524. W. L. Burns and J. A. Ibers. Syntheses and structures of three f-element selenite/hydroselenite compounds. JSolid State Chem., 2009, 182(6), 1457-1461. https://doi.org/10.1016/j.jssc.2009.03.016

    Article  CAS  Google Scholar 

  525. M. de Pedro, R. Enjalbert, A. Castro, J.-C. Trombe, and J. Galy. Synthesis, characterization, and crystal structure of Nd(HSeO3)(SeO3)·2H2O. J. Solid State Chem., 1994, 108(1), 87-93. https://doi.org/10.1006/jssc.1994.1013

    Article  CAS  Google Scholar 

  526. C. Wu, L. Li, L. Lin, Z. Huang, M. G. Humphrey, and C. Zhang. Enhancement of second-order optical nonlinearity in a lutetium selenite by monodentate anion partial substitution. Chem. Mater., 2020, 32(7), 3043-3053. https://doi.org/10.1021/acs.chemmater.0c00034

    Article  CAS  Google Scholar 

  527. J. Wontcheu and T. Schleid. CsTmCl2[SeO3]: a quinary phase in the system CsCl/TmOCl/SeO2. J. Solid State Chem., 2003, 171(1/2), 429-433. https://doi.org/10.1016/s0022-4596(02)00226-8

    Article  CAS  Google Scholar 

  528. C. Lipp and T. Schleid. RbErCl2[SeO3]: the first RbCl derivative of ErCl[SeO3]. Z. Kristallogr., 2006, 24, 171.

  529. P. S. Berdonosov, P. Schmidt, O. A. Dityat′yev, V. A. Dolgikh, P. Lightfoot, and M. Ruck. Nd2(SeO3)2(SeO4)2H2O - A mixed-valence compound containing selenium in the oxidation states +IV and +VI. Z. Anorg. Allg. Chem., 2004, 630(10), 1395-1400. https://doi.org/10.1002/zaac.200400109

    Article  CAS  Google Scholar 

  530. R. E. Morris, A. P. Wilkinson, and A. K. Cheetham. A novel mixed-valence selenium(IV)/selenium(VI) oxo compound: Crystal structure determination and X-ray absorption near edge structure study of erbium selenite(IV) selenate(VI) hydrate, Er(SeO3)(SeO4)1/2·H2O. Inorg. Chem., 1992, 31(23), 4774-4777. https://doi.org/10.1021/ic00049a012

    Article  CAS  Google Scholar 

  531. C. Lipp, R. E. Dinnebier, and T. Schleid. LuF[SeO3]: The structural chameleon of lanthanoid fluoride oxoselenates(IV). Inorg. Chem., 2013, 52(19), 10788-10794. https://doi.org/10.1021/ic4006289

    Article  CAS  PubMed  Google Scholar 

  532. C. Lipp and T. Schleid. LuF[SeO3] und LuCl[SeO3]: Zwei nicht-isotype Halogenid-Oxoselenate(IV) des Lutetiums. Z. Anorg. Allg. Chem., 2007, 633(9), 1429-1434. https://doi.org/10.1002/zaac.200700158

    Article  CAS  Google Scholar 

  533. I. V. Pekov, N. V. Zubkova, A. A. Zolotarev, V. O. Yapaskurt, S. V. Krivovichev, D. I. Belakovskiy, I. Lykova, M. F. Vigasina, A. V. Kasatkin, E. G. Sidorov, and D.Y. Pushcharovsky. Dioskouriite, CaCu4Cl6(OH)4·4H2O: A new mineral description, crystal chemistry and polytypism. Minerals, 2021, 11(1), 90. https://doi.org/10.3390/min11010090

    Article  CAS  Google Scholar 

  534. S. V. Krivovichev, F. C. Hawthorne, and P. A. Williams. Structural complexity and crystallization: The Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). Struct. Chem., 2017, 28(1), 153-159. https://doi.org/10.1007/s11224-016-0792-z

    Article  CAS  Google Scholar 

  535. W. A. Crichton, H. Müller, and M. Leoni. Synthesis and structure of calumetite-like SrCu4(OH)8Cl2∙3.5H2O. Mineral. Mag., 2021, 85(5), 708-715. https://doi.org/10.1180/mgm.2021.66

    Article  CAS  Google Scholar 

  536. L. Shvanskaya, O. Yakubovich, A. Ivanova, S. Baidya, T. Saha-Dasgupta, E. Zvereva, A. Golovanov, O. Volkova, and A. Vasiliev. Copper rubidium diphosphate, Rb2Cu3(P2O7)2: Synthesis, crystal structure, thermodynamic and resonant properties. New J. Chem., 2013, 37(9), 2743. https://doi.org/10.1039/c3nj00422h

    Article  CAS  Google Scholar 

  537. A. A. Mannasova, A. P. Chernyatieva, and S. V. Krivovichev. Cs2CuP2O7, a novel low-density open-framework structure based upon an augmented diamond net. Z. Kristallogr. - Cryst. Mater., 2016, 231(2), 65-69. https://doi.org/10.1515/zkri-2015-1894

    Article  CAS  Google Scholar 

  538. A. P. Chernyatieva, S. M. Aksenov, S. V. Krivovichev, N. A. Yamnova, and P. C. Burns. Synthesis and crystal structure of Rb1.5(NH4)0.5{Cu(P2O7)}: Comparative crystal chemistry and topology–symmetry analysis in terms of extended OD theory. Crystallogr. Rep., 2019, 64(2), 239-246. https://doi.org/10.1134/s1063774519020081

    Article  CAS  Google Scholar 

  539. A. ElMaadi, A. Boukhari, and E. M. Holt. Synthesis and crystal structure of K2CuP2O7. J. Alloys Compd., 1995, 223(1), 13-17. https://doi.org/10.1016/0925-8388(94)01415-9

    Article  CAS  Google Scholar 

  540. F. Erragh, A. Boukhari, F. Abraham, and B. Elouadi. The crystal structure of α- and β-Na2CuP2O7. J. Solid State Chem., 1995, 120(1), 23-31. https://doi.org/10.1006/jssc.1995.1370

    Article  CAS  Google Scholar 

  541. J. Zheng, M. Abudoureheman, P. Wang, A. Yalikun, B. Wei, Z. Chen, L. Sun, and J. Zhang. LiKCuP2O7: Cation substitution application with mixed-alkaline copper-containing pyrophosphate and magnetic properties. Inorg. Chim. Acta, 2023, 546, 121331. https://doi.org/10.1016/j.ica.2022.121331

    Article  CAS  Google Scholar 

  542. A. P. Chernyat′eva. Kristallokhimiya prirodnykh i sinteticheskikh fosfatov i sul′fatov so smeshannymi anionnymi radikalami (Crystal chemistry of natural and synthetic phosphates and sulfates with mixed anionic radicals): Cand. (Geol.-Mineral.) Dissertation. St. Petersburg, Russia: St. Petersburg State University, 2014. [In Russian]

  543. Q. Huang and S.-J. Hwu. Synthesis and characterization of three new layered phosphates, Na2MnP2O7, NaCsMnP2O7, and NaCsMn0.35Cu0.65P2O7. Inorg. Chem., 1998, 37(22), 5869-5874. https://doi.org/10.1021/ic980616d

    Article  CAS  Google Scholar 

  544. V. Syneček and L. Žák. The crystal structure of kettnerite, CaBi[OF¦CO3]. Czechoslov. J. Phys., 1960, 10(3), 195-207. https://doi.org/10.1007/bf01557262

    Article  Google Scholar 

  545. J. D. Grice, M. A. Cooper, and F. C. Hawthorne. Crystal-structure determination of twinned kettnerite. Can. Mineral., 1999, 37, 923.

  546. J. Hybler and M. Dušek. Revision of the crystal structure of kettnerite CaBi[OFCO3]. Eur. J. Mineral., 2007, 19(3), 411-418. https://doi.org/10.1127/0935-1221/2007/0019-1722

    Article  CAS  Google Scholar 

  547. A. O. Saleck, C. Mercier, C. Follet, O. Mentré, A. Assani, M. Saadi, and L. El Ammari. Synthesis, crystal structure and magnetic behavior of a new calcium magnesium and iron orthophosphate Ca2MgFe2(PO4)4. JSolid State Chem., 2020, 292, 121715. https://doi.org/10.1016/j.jssc.2020.121715

    Article  CAS  Google Scholar 

  548. M. Wang, D. Wei, L. Liang, X. Yan, and K. Lv. Centrosymmetric Rb2Mg3(SO4)4 and non-centrosymmetric Cs2Mg3(SO4)4 with a phase-matching nonlinear optical response. Inorg. Chem. Commun., 2019, 107, 107486. https://doi.org/10.1016/j.inoche.2019.107486

    Article  CAS  Google Scholar 

  549. M. Hidouri, B. Lajmi, A. Wattiaux, L. Fournes, J. Darriet, and M. Ben Amara. Crystal structure, magnetic properties and Mössbauer spectroscopy of NaCaFe3(PO4)4. J. Alloys Compd., 2003, 358(1/2), 36-41. https://doi.org/10.1016/s0925-8388(03)00129-4

    Article  CAS  Google Scholar 

  550. E. V. Nazarchuk, O. I. Siidra, A. A. Agakhanov, E. A. Lukina, E. Y. Avdontseva, and G. A. Karpov. Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulfate mineral from the Tolbachik volcano. Mineral. Mag., 2018, 82(6), 1233-1241. https://doi.org/10.1180/minmag.2017.081.089

    Article  CAS  Google Scholar 

  551. J. Gao, X. Sha, X. Liu, L. Song, and P. Zhao. Preparation, structure and properties of Na2Mn3(SO4)4: A new potential candidate with high voltage for Na-ion batteries. J. Mater. Chem. A, 2016, 4(30), 11870-11877. https://doi.org/10.1039/c6ta02629j

    Article  CAS  Google Scholar 

  552. I. A. Trussov, L. L. Male, M. L. Sanjuan, A. Orera, and P. R. Slater. Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: A combined single crystal and variable temperature powder diffraction and Raman spectroscopy study. J. Solid State Chem., 2019, 272, 157-165. https://doi.org/10.1016/j.jssc.2019.02.014

    Article  CAS  Google Scholar 

  553. H. Ben Yahia. Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4. Z. Kristallogr. - Cryst. Mater., 2019, 234(11/12), 697-705. https://doi.org/10.1515/zkri-2019-0038

    Article  CAS  Google Scholar 

  554. S. M. Aksenov, N. A. Yamnova, E. Y. Borovikova, S. Y. Stefanovich, A. S. Volkov, D. V. Deineko, O. V. Dimitrova, O. A. Gurbanova, A. E. Hixon, and S. V. Krivovichev. Topological features of borophosphates with mixed frameworks: Synthesis, crystal structure of first aluminum and lithium borophosphate Li3{Al2[BP4O16]}2H2O and comparative crystal chemistry. J. Struct. Chem., 2020, 61(11), 1760-1785. https://doi.org/10.1134/s0022476620110104

    Article  CAS  Google Scholar 

  555. S. M. Aksenov, A. N. Kuznetsov, A. A. Antonov, N. A. Yamnova, S. V. Krivovichev, and S. Merlino. Polytypism of compounds with the general formula Cs{Al2[TP6O20]} (T = B, Al): OD (order-disorder) description, topological features, and DFT-calculations. Minerals, 2021, 11(7), 708. https://doi.org/10.3390/min11070708

    Article  CAS  Google Scholar 

  556. S. Aksenov, A. Antonov, D. Deyneko, S. Krivovichev, and S. Merlino. Polymorphism, polytypism and modular aspect of compounds with the general formula A2M3(TO4)4 (A = Na, Rb, Cs, Ca; M = Mg, Mn, Fe3+, Cu2+; T = S6+, P5+): Order–disorder, topological description and DFT calculations. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2022, 78(1), 61-69. https://doi.org/10.1107/s2052520621009136

    Article  CAS  Google Scholar 

  557. L. V. Shvanskaya, O. V. Yakubovich, and V. I. Belik. New type of borophosphate anionic radical in the crystal structure of CsAl2BP6O20. Crystallogr. Rep., 2016, 61(5), 786-795. https://doi.org/10.1134/s1063774516050205

    Article  CAS  Google Scholar 

  558. J. Lesage, A. Guesdon, and B. Raveau. Two aluminotriphosphates with closely related intersecting tunnel structures involving tetrahedral “AlP” chains and layers: AAl3(P3O10)2, A = Rb, Cs. J. Solid State Chem., 2005, 178(4), 1212-1220. https://doi.org/10.1016/j.jssc.2005.01.012

    Article  CAS  Google Scholar 

  559. J. Lesage, A. Guesdon, and B. Raveau. RbGa3(P3O10)2: a new gallium phosphate isotypic with RbAl3(P3O10)2. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2005, 61(5), i44-i46. https://doi.org/10.1107/s0108270105006888

    Article  PubMed  Google Scholar 

  560. J. D. Grice and A. Pring. Veatchite: Structural relationships of the three polytypes. Am. Mineral., 2012, 97(4), 489-495. https://doi.org/10.2138/am.2012.3889

    Article  CAS  Google Scholar 

  561. N. A. Yamnova, N. V. Zubkova, O. V. Dimitrova, and N. N. Mochenova. Crystal structure of a new synthetic calcium pentaborate, Ca2[B5O8(OH)]2·[B(OH)3]·H2O, and modular crystal chemistry of pentaborates with polar boron-oxygen layers. Crystallogr. Rep., 2009, 54(5), 800-813. https://doi.org/10.1134/s1063774509050113

    Article  CAS  Google Scholar 

  562. N. A. Yamnova, S. M. Aksenov, and N. N. Eremin. Modular structure of the veatchite polytypes and of the related pentaborates. New Data Miner., 2014, 49, 75-89.

  563. E. L. Belokoneva, S. Y. Stefanovich, M. A. Erilov, O. V. Dimitrova, and N. N. Mochenova. A new modification of Ba[B5O8(OH)]·H2O, the refined structure of Ba2[B5O9]Cl·0.5H2O, and the role of the pentaborate structural units in the formation of the quadratic optical nonlinearity. Crystallogr. Rep., 2008, 53(2), 228-236. https://doi.org/10.1134/s1063774508020107

    Article  CAS  Google Scholar 

  564. D. Y. Pushcharovsky, S. Merlino, O. Ferro, S. A. Vinogradova, and O. V. Dimitrova. The crystal structures of two new Ba borates: pentaborate hydrate, Ba[B5O8(OH)]·H2O, and decaborate, LiBa2[B10O16(OH)3]. J. Alloys Compd., 2000, 306(1/2), 163-169. https://doi.org/10.1016/s0925-8388(00)00788-x

    Article  CAS  Google Scholar 

  565. N. A. Yamnova, Y. K. Egorov-Tismenko, N. V. Zubkova, O. V. Dimitrova, A. P. Kantor, Y. Danian, and X. Ming. Crystal structure of new synthetic calcium pentaborate Ca[B5O8(OH)]·H2O and its relation to pentaborates with similar boron-oxygen radicals. Crystallogr. Rep., 2003, 48(4), 557-562. https://doi.org/10.1134/1.1595178

    Article  CAS  Google Scholar 

  566. N. A. Yamnova, E. Y. Borovikova, and O. V. Dimitrova. Crystallization, crystal-structure refinement, and IR spectroscopy of a synthetic hexahydroborite analog. Crystallogr. Rep., 2011, 56(6), 1019-1024. https://doi.org/10.1134/s1063774511060289

    Article  CAS  Google Scholar 

  567. T. Ernst. Darstellung und Kristallstruktur von Lithiumhydroxyd. Z. Phys. Chem., 1933, 20B(1), 65-88. https://doi.org/10.1515/zpch-1933-2006

    Article  Google Scholar 

  568. H. Dachs. Bestimmung der Lage des Wasserstoffs in LiOH durch Neutronenbeugung. Z. Kristallogr. - Cryst. Mater., 1959, 112(1-6), 60-67. https://doi.org/10.1524/zkri.1959.112.jg.60

    Article  CAS  Google Scholar 

  569. H. Jacobs, J. Kockelkorn, and T. Tacke. Hydroxide des Natriums, Kaliums und Rubidiums: Einkristallzüchtung und röntgenographische Strukturbestimmung an der bei Raumtemperatur stabilen Modifikation. Z. Anorg. Allg. Chem., 1985, 531(12), 119-124. https://doi.org/10.1002/zaac.19855311217

    Article  CAS  Google Scholar 

  570. H. Stehr. Neubestimmung der Kristallstrukturen des dimorphen Natriumhydroxids, NaOH, bei verschiedenen Temperaturen mit Röntgenstrahl- und Neutronenbeugung. Z. Kristallogr. - Cryst. Mater., 1967, 125(125), 332-359. https://doi.org/10.1524/zkri.1967.125.125.332

    Article  CAS  Google Scholar 

  571. H.-J. Bleif and H. Dachs. Cystalline modifications and structural phase transitions of NaOH and NaOD. Acta Crystallogr., Sect. A, 1982, 38(4), 470-476. https://doi.org/10.1107/s0567739482001028

    Article  Google Scholar 

  572. M. Wörsching and C. Hoch. CsOH and its lighter homologues - a comparison. Z. Naturforsch., B, 2014, 69(11/12), 1229-1236. https://doi.org/10.5560/znb.2014-4163

    Article  Google Scholar 

  573. H. Jacobs and B. Harbrecht. Eine neue Darstellungsmethode für Caesiumhydroxid / A New Preparative Method for Cesiumhydroxide. Z. Naturforsch., B, 1981, 36(2), 270/271. https://doi.org/10.1515/znb-1981-0228

    Article  Google Scholar 

  574. A. Hermann. High-pressure phase transitions in rubidium and caesium hydroxides. Phys. Chem. Chem. Phys., 2016, 18(24), 16527-16534. https://doi.org/10.1039/c6cp03203f

    Article  CAS  PubMed  Google Scholar 

  575. O. I. Siidra, S. N. Britvin, S. V. Krivovichev, and W. Depmeier. Polytypism of layered alkaline hydroxides: Crystal structure of TlOH. Z. Anorg. Allg. Chem., 2010, 636(3/4), 595-599. https://doi.org/10.1002/zaac.200900367

    Article  CAS  Google Scholar 

  576. N. A. Yamnova, D. A. Banaru, A. M. Banaru, and S. M. Aksenov. Comparative crystal chemistry, symmetry features, and structural complexity of LiOH, NaOH, RbOH, CsOH, and TlOH hydroxides. J. Struct. Chem., 2022, 63(12), 2054-2067. https://doi.org/10.1134/s0022476622120174

    Article  CAS  Google Scholar 

  577. S. V. Krivovichev. Ladders of information: what contributes to the structural complexity of inorganic crystals. Z. Kristallogr. - Cryst. Mater., 2018, 233(3/4), 155-161. https://doi.org/10.1515/zkri-2017-2117

    Article  CAS  Google Scholar 

  578. V. V. Gurzhiy and J. Plášil. Structural complexity of natural uranyl sulfates. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2019, 75(1), 39-48. https://doi.org/10.1107/s2052520618016098

    Article  CAS  Google Scholar 

  579. W. Hornfeck. On an extension of Krivovichev′s complexity measures. Acta Crystallogr., Sect. A: Found. Adv., 2020, 76(4), 534-548. https://doi.org/10.1107/s2053273320006634

    Article  CAS  Google Scholar 

  580. I. Csiszár. Axiomatic characterizations of information measures. Entropy, 2008, 10(3), 261-273. https://doi.org/10.3390/e10030261

    Article  Google Scholar 

  581. A. M. Banaru, S. M. Aksenov, and S. V. Krivovichev. Complexity parameters for molecular solids. Symmetry, 2021, 13(8), 1399. https://doi.org/10.3390/sym13081399

    Article  CAS  Google Scholar 

  582. A. M. Banaru and S. M. Aksenov. Complexity of molecular nets: Topological approach and descriptive statistics. Symmetry, 2022, 14(2), 220. https://doi.org/10.3390/sym14020220

    Article  CAS  Google Scholar 

  583. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5), 751-767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  584. D. Ghosh and R. Biswas. Theoretical calculation of absolute radii of atoms and ions. Part 2. The ionic radii. Int. J. Mol. Sci., 2003, 4(6), 379-407. https://doi.org/10.3390/i4060379

    Article  CAS  Google Scholar 

  585. M. Nyman and P. C. Burns. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chem. Soc. Rev., 2012, 41(22), 7354. https://doi.org/10.1039/c2cs35136f

    Article  CAS  PubMed  Google Scholar 

  586. J. Qiu and P. C. Burns. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev., 2013, 113(2), 1097-1120. https://doi.org/10.1021/cr300159x

    Article  CAS  PubMed  Google Scholar 

  587. G. E. Sigmon, D. K. Unruh, J. Ling, B. Weaver, M. Ward, L. Pressprich, A. Simonetti, and P. C. Burns. Symmetry versus minimal pentagonal adjacencies in uranium-based polyoxometalate fullerene topologies. Angew. Chem., Int. Ed., 2009, 48(15), 2737-2740. https://doi.org/10.1002/anie.200805870

    Article  CAS  Google Scholar 

  588. H. Traustason, S. M. Aksenov, and P. C. Burns. The lithium–water configuration encapsulated by uranyl peroxide cage cluster U24. CrystEngComm, 2019, 21(3), 390-393. https://doi.org/10.1039/c8ce01774c

    Article  CAS  Google Scholar 

  589. S. Hickam, S. M. Aksenov, M. Dembowski, S. N. Perry, H. Traustason, M. Russell, and P. C. Burns. Complexity of uranyl peroxide cluster speciation from alkali-directed oxidative dissolution of uranium dioxide. Inorg. Chem., 2018, 57(15), 9296-9305. https://doi.org/10.1021/acs.inorgchem.8b01299

    Article  CAS  PubMed  Google Scholar 

  590. P. A. Sandomirskiy and N. V. Belov. Kristallokhimiya smeshannykh anionnykh radikalov (Crystal Chemistry of Mixed Anionic Radicals). Moscow, Russia: Nauka, 1984. [In Russian]

  591. V. V. Gurzhiy, S. A. Kalashnikova, I. V. Kuporev, and J. Plášil. Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals, 2021, 11(6), 704. https://doi.org/10.3390/cryst11060704

    Article  CAS  Google Scholar 

  592. V. V. Gurzhiy, I. V. Kuporev, V. M. Kovrugin, M. N. Murashko, A. V. Kasatkin, and J. Plášil. Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals, 2019, 9(12), 639. https://doi.org/10.3390/cryst9120639

    Article  CAS  Google Scholar 

  593. V. V. Gurzhiy and J. Plášil. Structural complexity of natural uranyl sulfates. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2019, 75(1), 39-48. https://doi.org/10.1107/s2052520618016098

    Article  CAS  Google Scholar 

  594. M. O′Keeffe and B. Hyde. Crystal Structures I: Patterns and Symmetry. Mineralogical Society of America, 1996.

  595. M. C. Day and F. C. Hawthorne. Bond topology of chain, ribbon and tube silicates. Part I. Graph-theory generation of infinite one-dimensional arrangements of (TO4)n tetrahedra. Acta Crystallogr., Sect. A: Found. Adv., 2022, 78(3), 212-233. https://doi.org/10.1107/s2053273322001747

    Article  CAS  Google Scholar 

  596. M. C. Day and F. C. Hawthorne. A structure hierarchy for silicate minerals: chain, ribbon, and tube silicates. Mineral. Mag., 2020, 84(2), 165-244. https://doi.org/10.1180/mgm.2020.13

    Article  CAS  Google Scholar 

  597. C. Hejny and T. Armbruster. Polytypism in xonotlite Ca6Si6O17(OH)2. Z. Kristallogr. - Cryst. Mater., 2001, 216(7), 396-408. https://doi.org/10.1524/zkri.216.7.396.20363

    Article  CAS  Google Scholar 

  598. F. Dal Bo, E. H. Gulbransen, and H. Friis. New data on nordite-(Ce) and the establishment of the nordite supergroup. Mineral. Mag., 2021, 85(3), 431-437. https://doi.org/10.1180/mgm.2021.42

    Article  CAS  Google Scholar 

  599. H. Yang, X. Gu, R. T. Downs, S. H. Evans, J. J. Van Nieuwenhuizen, R. M. Lavinsky, and X. Xie. Meieranite, Na2Sr3MgSi6O17, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. Can. Mineral., 2019, 57(4), 457-466. https://doi.org/10.3749/canmin.1800067

    Article  CAS  Google Scholar 

  600. V. A. Blatov, M. O′Keeffe, and D. M. Proserpio. Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: Recommended terminology. CrystEngComm, 2010, 12(1), 44-48. https://doi.org/10.1039/b910671e

    Article  CAS  Google Scholar 

  601. S. N. Volkov, V. A. Yukhno, R. S. Bubnova, S. M. Aksenov, A. V. Povolotskiy, D. O. Charkin, M. Y. Arsent′ev, V. L. Ugolkov, and M. G. Krzhizhanovskaya. Resolving the problems of the past: reinvestigation of the structure of acentric deep UV BaB8O13 borate. Cryst. Growth Des., 2022, 22(10), 6267-6274. https://doi.org/10.1021/acs.cgd.2c00850

    Article  CAS  Google Scholar 

  602. P. C. Burns, J. D. Grice, and F. C. Hawthorne. Borate minerals. I. Polyhedral clusters and fundamental building blocks. Can. Mineral., 1995, 33, 1131.

  603. V. A. Blatov. Topological relations between three-dimensional periodic nets. I. Uninodal nets. logr., Sect. A: Found. Crystallogr., 2007, 63(4), 329-343. https://doi.org/10.1107/s0108767307022088

    Article  CAS  Google Scholar 

  604. A. P. Shevchenko, A. A. Shabalin, I. Y. Karpukhin, and V. A. Blatov. Topological representations of crystal structures: Generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. Methods, 2022, 2(1), 250-265. https://doi.org/10.1080/27660400.2022.2088041

    Article  Google Scholar 

  605. A. A. Golov, O. A. Blatova, and V. A. Blatov. Perceiving zeolite self-assembly: A combined top-down and bottom-up approach within the tiling model. J. Phys. Chem. C, 2020, 124(2), 1523-1528. https://doi.org/10.1021/acs.jpcc.9b10514

    Article  CAS  Google Scholar 

  606. A. P. Shevchenko and V. A. Blatov. Simplify to understand: how to elucidate crystal structures? Struct. Chem., 2021, 32(2), 507-519. https://doi.org/10.1007/s11224-020-01724-4

    Article  CAS  Google Scholar 

  607. E. V. Alexandrov, A. P. Shevchenko, N. A. Nekrasova, and V. A. Blatov. Topological methods for analysis and design of coordination polymers. Russ. Chem. Rev., 2022, 91(4), RCR5032. https://doi.org/10.1070/rcr5032

    Article  PubMed  Google Scholar 

  608. V. A. Blatov. Methods for topological analysis of atomic nets. J. Struct. Chem., 2009, 50(S1), 160-167. https://doi.org/10.1007/s10947-009-0204-y

    Article  CAS  Google Scholar 

  609. G. D. Ilyushin. Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling of Self-Organization Processes in Crystal-Forming Systems). Moscow, Russia: URSS, 2003. [In Russian]

  610. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio. The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater., 2013, 25(3), 412-424. https://doi.org/10.1021/cm303528u

    Article  CAS  Google Scholar 

  611. G. D. Ilyushin. Cluster self-organization theory for crystal-forming systems: The geometrical and topological model of formation, selection, and evolution of precursor nanoclusters of molecular and framework compounds. Russ. J. Inorg. Chem., 2013, 58(13), 1625-1667. https://doi.org/10.1134/s0036023613130020

    Article  CAS  Google Scholar 

  612. G. D. Ilyushin, V. A. Blatov, and L. N. Dem′yanets. Cluster self-organization of germanate systems: Suprapolyhedral precursor nanoclusters and self-assembly of CAN-Na8(Al6Ge6O24)Ge(OH)6(H2O)2 and CAN-Cs2Na6(Al6Ge6O24)Ge(OH)6) zeolite crystal structures. Russ. J. Inorg. Chem., 2011, 56(10), 1572-1578. https://doi.org/10.1134/s0036023611100111

    Article  CAS  Google Scholar 

  613. G. D. Ilyushin and V. A. Blatov. Modeling of self-organization processes in crystal-forming systems: Templated precursor nanoclusters T48 and the self-assembly of crystal structures of 15-crown-5, Na-FAU, 18-crown-6, Na-EMT, and Ca,Ba-TSC zeolites. Russ. J. Inorg. Chem., 2015, 60(4), 469-482. https://doi.org/10.1134/s0036023615040063

    Article  CAS  Google Scholar 

  614. G. D. Ilyushin. Cluster self-organization of inorganic crystal-forming systems: Templated nanocluster precursors and self-assembly of framework MT structures of A/B,Zr silicates (A = Na, K; B = Ca, Sr). Crystallogr. Rep., 2012, 57(2), 169-184. https://doi.org/10.1134/s1063774512020095

    Article  CAS  Google Scholar 

  615. V. Y. Shevchenko, V. A. Blatov, and G. D. Ilyushin. Combinatorial-topological modeling of the cluster self-assembly of crystal structures of zeolites of the GME, AFX, AFT, and ISC-2 family. Glas. Phys. Chem., 2015, 41(5), 443-452. https://doi.org/10.1134/s108765961505017x

    Article  CAS  Google Scholar 

  616. G. D. Ilyushin, V. A. Blatov, L. N. Dem′yanets, and A. K. Ivanov-Shits. Mechanism of structural phase transitions in the Li4GeO4–ZnGeO4 system: Computer modeling and identification of invariant nanocluster structures in Li4GeO4, LISICON Li6Zn(GeO4)2, and Li4Zn2(GeO4)2 (γ phase). Russ. J. Inorg. Chem., 2012, 57(6), 846-853. https://doi.org/10.1134/s0036023612020131

    Article  CAS  Google Scholar 

  617. G. D. Ilyushin. Geometrical and topological model of formation, selection, and evolution of precursor nanoclusters in the convergent matrix self-assembly mechanism of crystal formation. Russ. J. Inorg. Chem., 2012, 57(14), 1737-1775. https://doi.org/10.1134/s0036023612140033

    Article  CAS  Google Scholar 

  618. V. Y. Shevchenko, V. A. Blatov, and G. D. Ilyushin. Structural chemistry of organo-siloxanes: Composition and structure of Sin(O,C)m (n = 2-21) clusters with Si-O-Si bridging bonds. Glas. Phys. Chem., 2014, 40(2), 180-189. https://doi.org/10.1134/s1087659614020205

    Article  CAS  Google Scholar 

  619. C. Baerlocher and L. B. McCusker. Atlas of Zeolite Framework Types. Elsevier, 2007.

  620. A. A. Voronkov, V. V. Ilyukhin, and N. V. Belov. Kristallokhimiya smeshannogo karkasa. Printsipy ikh formirovaniya (Crystal chemistry of mixed frameworks. Principles of their formation). Kristallografiya, 1975, 20(3), 556. [In Russian]

  621. E. A. Kobeleva, S. M. Aksenov, A. M. Banaru, A. P. Chernyatyeva, and S. V. Krivovichev. Osobennosti kristallokhimii i topologii tseolitov i ikh analogov so smeshannymi berillofosfatnymi TT-karkasami (Features of crystal chemistry and topology of zeolites and their analogues with mixed beryllium phosphate TT frameworks). In: Abstracts of Papers: XII All-Russian Youth Scientific Conference “Minerals: structure, properties, research methods”, Ekaterinburg, Russia, Aug 26-28, 2021. Ekaterinburg, Russia: Zavaritsky Institute of Geology and Geochemistry, 2021.

  622. D. M. C. Huminicki and F. C. Hawthorne. The crystal chemistry of the phosphate minerals. Rev. Mineral. Geochem., 2002, 48(1), 123-253. https://doi.org/10.2138/rmg.2002.48.5

    Article  CAS  Google Scholar 

  623. G. Giuseppetti and C. Tadini. Refinement of the crystal structure of beryllonite, NaBePO4. TMPM, Tschermaks Mineral. Petrogr. Mitt., 1973, 20(1), 1-12. https://doi.org/10.1007/bf01082098

    Article  CAS  Google Scholar 

  624. R. Hammond, J. Barbier, and C. Gallardo. Crystal structures and crystal chemistry of AgXPO4 (X = Be, Zn). JSolid State Chem., 1998, 141(1), 177-185. https://doi.org/10.1006/jssc.1998.7942

    Article  CAS  Google Scholar 

  625. M. T. Averbuch-Pouchot, A. Durif, and I. Tordjman. Structure cristalline du polyphosphate de beryllium: Be(PO3)2(II). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, 33(11), 3462-3464. https://doi.org/10.1107/s0567740877011200

    Article  Google Scholar 

  626. M. T. Averbuch-Pouchot and A. Durif. Preparation chimique et etude structurale d′un nouveau triphosphate: Be2RbP3O10. C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers, 1993, 316, 609-613.

  627. M. T. Averbuch-Pouchot, A. Durif, J. Coing-Boyat, and J. C. Guitel. Le phosphobéryllate d′ammonium. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, 33(1), 203-205. https://doi.org/10.1107/s0567740877003070

    Article  Google Scholar 

  628. E. Schultz and F. Liebau. Crystal structure of beryllium polyphosphate BeP2O6III - A derivative of silica Κ (keatite). Z. Kristallogr. - Cryst. Mater., 1981, 154(1-4), 115-126. https://doi.org/10.1524/zkri.1981.154.14.115

    Article  CAS  Google Scholar 

  629. F. Walter. Weinebeneite, CaBe3(PO4)2(OH)2·4H2O, a new mineral species: Mineral data and crystal structure. Eur. J. Mineral., 1992, 4(6), 1275-1284. https://doi.org/10.1127/ejm/4/6/1275

    Article  CAS  Google Scholar 

  630. K. Dehnicke and B. Neumüller. Neues aus der Chemie des Berylliums. Z. Anorg. Allg. Chem., 2008, 634(15), 2703-2728. https://doi.org/10.1002/zaac.200800163

    Article  CAS  Google Scholar 

  631. S. M. Aksenov, N. V. Chukanov, V. P. Tarasov, D. A. Banaru, S. A. Mackley, A. M. Banaru, S. V. Krivovichev, and P. C. Burns. The local state of hydrogen atoms and proton transfer in the crystal structure of natural berborite, Be2(BO3)(OH)·H2O: low-temperature single crystal X-ray analysis, IR and 1H NMR spectroscopy, and crystal chemistry and structural complexity of beryllium. J. Phys. Chem. Solids, 2023, (in press).

  632. S. M. Aksenov, N. A. Yamnova, E. Y. Borovikova, S. Y. Stefanovich, A. S. Volkov, D. V. Deineko, O. V. Dimitrova, O. A. Gurbanova, A. E. Hixon, and S. V. Krivovichev. Topological features of borophosphates with mixed frameworks: synthesis, crystal structure of first aluminum and lithium borophosphate Li3{Al2[BP4O16]}2H2O and comparative crystal chemistry. J. Struct. Chem., 2020, 61(11), 1760-1785. https://doi.org/10.1134/s0022476620110104

    Article  CAS  Google Scholar 

  633. N. V. Zubkova and D. Y. Pushcharovsky. New data on the crystal structures of natural zirconosilicates: Structure refinements and ion-exchange behavior. Z. Kristallogr. - Cryst. Mater., 2008, 223(1/2), 98-108. https://doi.org/10.1524/zkri.2008.0007

    Article  CAS  Google Scholar 

  634. G. D. Ilyushin and V. A. Blatov. Crystal chemistry of zirconosilicates and their analogs: Topological classification of MT frameworks and suprapolyhedral invariants. Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58(2), 198-218. https://doi.org/10.1107/s0108768101021619

    Article  CAS  Google Scholar 

  635. N. V. Chukanov, A. I. Kazakov, I. V. Pekov, and A. A. Grigor′eva. The kinetics of cation exchange of amorphized terskite. Russ. J. Phys. Chem. A, 2010, 84(12), 2154-2159. https://doi.org/10.1134/s0036024410120253

    Article  CAS  Google Scholar 

  636. N. V. Zubkova, R. P. Nikolova, N. V. Chukanov, V. V. Kostov-Kytin, I. V. Pekov, D. A. Varlamov, T. S. Larikova, O. N. Kazheva, N. A. Chervonnaya, G. V. Shilov, and D. Y. Pushcharovsky. Crystal chemistry and properties of elpidite and its Ag-exchanged forms. Minerals, 2019, 9(7), 420. https://doi.org/10.3390/min9070420

    Article  CAS  Google Scholar 

  637. N. A. Kabanova, T. L. Panikorovskii, V. V. Shilovskikh, N. S. Vlasenko, V. N. Yakovenchuk, S. M. Aksenov, V. N. Bocharov, and S. V. Krivovichev. The Na2–nHn[Zr(Si2O7)]·mH2O minerals and related compounds (n = 0-0.5; m = 0.1): Structure refinement, framework topology, and possible Na+-ion migration paths. Crystals, 2020, 10(11), 1016. https://doi.org/10.3390/cryst10111016

    Article  CAS  Google Scholar 

  638. S. M. Aksenov, A. M. Portnov, N. V. Chukanov, R. K. Rastsvetaeva, Y. V. Nelyubina, N. N. Kononkova, and M. I. Akimenko. Ordering of calcium and vacancies in calcium catapleiite CaZr[Si3O9]·2H2O. Crystallogr. Rep., 2016, 61(3), 376-382. https://doi.org/10.1134/s1063774516030020

    Article  CAS  Google Scholar 

  639. M. A. W. Marks, H. G. M. Eggenkamp, P. Atanasova, F. Mundel, S. Kümmel, M. Hagen, T. Wenzel, and G. Markl. Review on the compositional variation of eudialyte-group minerals in the Ilímaussaq complex (South Greenland). Minerals, 2020, 10(11), 1011. https://doi.org/10.3390/min10111011

    Article  CAS  Google Scholar 

  640. J. A. Mikhailova, Y. A. Pakhomovsky, T. L. Panikorovskii, A. V. Bazai, and V. N. Yakovenchuk. Eudialyte group minerals from the Lovozero alkaline massif, Russia: Occurrence, chemical composition, and petrogenetic significance. Minerals, 2020, 10(12), 1070. https://doi.org/10.3390/min10121070

    Article  CAS  Google Scholar 

  641. L. Kogarko and T. F. D. Nielsen. Chemical composition and petrogenetic implications of eudialyte-group mineral in the peralkaline Lovozero complex, Kola Peninsula, Russia. Minerals, 2020, 10(11), 1036. https://doi.org/10.3390/min10111036

    Article  CAS  Google Scholar 

  642. P. Atanasova, M. A. W. Marks, M. Frenzel, J. Gutzmer, J. Krause, and G. Markl. Fractionation of geochemical twins (Zr/Hf, Nb/Ta and Y/Ho) and HREE-enrichment during magmatic and metamorphic processes in peralkaline nepheline syenites from Norra Kärr (Sweden). Lithos, 2020, 372/373, 105667. https://doi.org/10.1016/j.lithos.2020.105667

    Article  CAS  Google Scholar 

  643. L. N. Kogarko. Geochemistry of rare earth metals in the ore eudialyte complex of the Lovozero rare earth deposit. Dokl. Earth Sci., 2020, 491(2), 231-234. https://doi.org/10.1134/s1028334x2004008x

    Article  CAS  Google Scholar 

  644. J. Schilling, F.-Y. Wu, C. McCammon, T. Wenzel, M. A. W. Marks, K. Pfaff, D. E. Jacob, and G. Markl. The compositional variability of eudialyte-group minerals. Mineral. Mag., 2011, 75(1), 87-115. https://doi.org/10.1180/minmag.2011.075.1.87

    Article  CAS  Google Scholar 

  645. L. N. Kogarko, Y. Lahaye, and G. P. Brey. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Mineral. Petrol., 2010, 98(1-4), 197-208. https://doi.org/10.1007/s00710-009-0066-1

    Article  CAS  Google Scholar 

  646. E. R. Sheard, A. E. Williams-Jones, M. Heiligmann, C. Pederson, and D. L. Trueman. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor lake rare metal deposit, Northwest Territories, Canada. Econ. Geol., 2012, 107(1), 81-104. https://doi.org/10.2113/econgeo.107.1.81

    Article  CAS  Google Scholar 

  647. K. Binnemans and P. T. Jones. Solvometallurgy: An emerging branch of extractive metallurgy. J. Sustain. Metall., 2017, 3(3), 570-600. https://doi.org/10.1007/s40831-017-0128-2

    Article  Google Scholar 

  648. V. A. Chanturiya, V. G. Minenko, A. L. Samusev, E. L. Chanturia, E. V. Koporulina, I. Bunin, and M. V. Ryazantseva. The effect of energy impacts on the acid leaching of eudialyte concentrate. Miner. Process. Extr. Metall. Rev., 2021, 42(7), 484-495. https://doi.org/10.1080/08827508.2020.1793141

    Article  CAS  Google Scholar 

  649. A. Balinski, O. Wiche, N. Kelly, M. A. Reuter, and C. Scharf. Separation of rare earth elements from contaminants and valuable components by in-situ precipitation during the hydrometallurgical processing of eudialyte concentrate. Hydrometallurgy, 2020, 194, 105345. https://doi.org/10.1016/j.hydromet.2020.105345

    Article  CAS  Google Scholar 

  650. Y. Zhang, H. Zhao, M. Sun, Y. Zhang, X. Meng, L. Zhang, X. Lv, S. Davaasambuu, and G. Qiu. Scandium extraction from silicates by hydrometallurgical process at normal pressure and temperature. J. Mater. Res. Technol., 2020, 9(1), 709-717. https://doi.org/10.1016/j.jmrt.2019.11.012

    Article  CAS  Google Scholar 

  651. A. Balinski, P. Atanasova, O. Wiche, N. Kelly, M. A. Reuter, and C. Scharf. Selective leaching of rare earth elements (REEs) from eudialyte concentrate after sulfation and thermal decomposition of non-REE sulfates. Minerals, 2019, 9(9), 522. https://doi.org/10.3390/min9090522

    Article  CAS  Google Scholar 

  652. A. Balinski, P. Atanasova, O. Wiche, N. Kelly, M. A. Reuter, and C. Scharf. Recovery of REEs, Zr(+Hf), Mn and Nb by H2SO4 leaching of eudialyte concentrate. Hydrometallurgy, 2019, 186, 176-186. https://doi.org/10.1016/j.hydromet.2019.04.007

    Article  CAS  Google Scholar 

  653. R. K. Rastsvetaeva and N. V. Chukanov. Classification of eudialyte-group minerals. Geol. Ore Depos., 2012, 54(7), 487-497. https://doi.org/10.1134/s1075701512070069

    Article  Google Scholar 

  654. R. K. Rastsvetaeva. Structural mineralogy of the eudialyte group: A review. Crystallogr. Rep., 2007, 52(1), 47-64. https://doi.org/10.1134/s1063774507010063

    Article  CAS  Google Scholar 

  655. O. Johnsen, G. Ferraris, R. A. Gault, J. D. Grice, A. R. Kampf, and I. V. Pekov. The nomenclature of eudialyte-group minerals. Can. Mineral., 2003, 41(3), 785-794. https://doi.org/10.2113/gscanmin.41.3.785

    Article  CAS  Google Scholar 

  656. N. V. Chukanov, R. K. Rastsvetaeva, Ł. Kruszewski, S. M. Aksenov, V. S. Rusakov, S. N. Britvin, and S. A. Vozchikova. Siudaite, Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula. Phys. Chem. Miner., 2018, 45(8), 745-758. https://doi.org/10.1007/s00269-018-0959-9

    Article  CAS  Google Scholar 

  657. Y. D. Gritsenko, N. V. Chukanov, S. M. Aksenov, I. V. Pekov, D. A. Varlamov, L. A. Pautov, S. A. Vozchikova, D. A. Ksenofontov, and S. N. Britvin. Odikhinchaite, Na9Sr3[(H2O)2Na]Ca6Mn3Zr3NbSi (Si24O72)O(OH)3(CO3)H2O, a new eudialyte-group mineral from the Odikhincha intrusion, Taimyr Peninsula, Russia. Minerals, 2020, 10(12), 1062. https://doi.org/10.3390/min10121062

    Article  CAS  Google Scholar 

  658. N. V. Chukanov, S. M. Aksenov, I. V. Pekov, D. I. Belakovskiy, S. A. Vozchikova, and S. N. Britvin. Sergevanite, Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula. Can. Mineral., 2020, 58(4), 421-436. https://doi.org/10.3749/canmin.2000006

    Article  CAS  Google Scholar 

  659. R. K. Rastsvetaeva, N. V. Chukanov, and D. V. Lisitsin. New data on the isomorphism in eudialyte-group minerals. IХ: Blocky isomorphism at key sites. Crystal structure of Fe-deficient eudialyte from the Khibiny massif. Crystallogr. Rep., 2021, 66(1), 112-119. https://doi.org/10.1134/s1063774521010156

    Article  CAS  Google Scholar 

  660. S. M. Aksenov, N. A. Kabanova, N. V. Chukanov, T. L. Panikorovskii, V. A. Blatov, and S. V. Krivovichev. The role of local heteropolyhedral substitutions in the stoichiometry, topological characteristics and ion-migration paths in the eudialyte-related structures: a quantitative analysis. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2022, 78(1), 80-90. https://doi.org/10.1107/s2052520621010015

    Article  CAS  Google Scholar 

  661. A. P. Shevchenko and V. A. Blatov. Simplify to understand: how to elucidate crystal structures? Struct. Chem., 2021, 32(2), 507-519. https://doi.org/10.1007/s11224-020-01724-4

    Article  CAS  Google Scholar 

  662. R. K. Rastsvetaeva, N. V. Chukanov, and S. M. Aksenov. Mineraly gruppy evdialita: kristallokhimiya, svoistva, genezis (Minerals of Eudialyte Group: Crystal Chemistry, Properties, Genesis). Nizhni Novgorod, Russia: Nizhegorod. Gos. Univ., 2012. [In Russian]

  663. A. P. Khomyakov, G. N. Nechelyustov, R. K. Rastsvetaeva, and K. A. Rozenberg. Davinciite, Na12K3Ca6Fe2+3Zr3(Si26O73OH)Cl2, a new K,Na-ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos., 2013, 55(7), 532-540. https://doi.org/10.1134/s1075701513070076

    Article  Google Scholar 

  664. R. K. Rastsvetaeva, S. M. Aksenov, and K. A. Rozenberg. Crystal structure and genesis of the hydrated analog of rastsvetaevite. Crystallogr. Rep., 2015, 60(6), 831-840. https://doi.org/10.1134/s1063774515060279

    Article  CAS  Google Scholar 

  665. A. Vasile and A. M. Busuioc-Tomoiaga. A new route for the synthesis of titanium silicalite-1. Mater. Res. Bull., 2012, 47(1), 35-41. https://doi.org/10.1016/j.materresbull.2011.10.008

    Article  CAS  Google Scholar 

  666. J. S. Reddy, R. Kumar, and P. Ratnasamy. Titanium silicalite-2: Synthesis, characterization and catalytic properties. Appl. Catal., 1990, 58(1), L1-L4. https://doi.org/10.1016/s0166-9834(00)82273-3

    Article  CAS  Google Scholar 

  667. M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. MacKay, A. Ferreira, J. Rocha, and S. Lidin. Structure of the microporous titanosilicate ETS-10. Nature, 1994, 367(6461), 347-351. https://doi.org/10.1038/367347a0

    Article  CAS  Google Scholar 

  668. N. V. Chukanov, I. V. Pekov, and A. P. Khomyakov. Recommended nomenclature for labuntsovite-group minerals. Eur. J. Mineral., 2002, 14(1), 165-173. https://doi.org/10.1127/0935-1221/2002/0014-0165

    Article  CAS  Google Scholar 

  669. L. B. McCusker. IUPAC Nomenclature for ordered microporous and mesoporous materials and its application to non-zeolite microporous mineral phases. Rev. Mineral. Geochem., 2005, 57(1), 1-16. https://doi.org/10.2138/rmg.2005.57.1

    Article  CAS  Google Scholar 

  670. G. D. Gatta and Y. Lee. Zeolites at high pressure: A review. Mineral. Mag., 2014, 78(2), 267-291. https://doi.org/10.1180/minmag.2014.078.2.04

    Article  CAS  Google Scholar 

  671. I. V. Pekov. Microporous framework silicate minerals with rare and transition elements: minerogenetic aspects. Rev. Mineral. Geochem., 2005, 57(1), 145-171. https://doi.org/10.2138/rmg.2005.57.5

    Article  CAS  Google Scholar 

  672. E. Sokolova and F. C. Hawthorne. Reconsideration of the crystal structure of paranatisite and the crystal chemistry of [[6]M2[4]T2φ12] sheets. Can. Mineral., 2002, 40(3), 947-960. https://doi.org/10.2113/gscanmin.40.3.947

    Article  CAS  Google Scholar 

  673. A. A. Zolotarev, S. V. Krivovichev, F. Cámara, L. Bindi, E. S. Zhitova, F. Hawthorne, and E. Sokolova. Extraordinary structural complexity of ilmajokite: A multilevel hierarchical framework structure of natural origin. IUCrJ, 2020, 7(1), 121-128. https://doi.org/10.1107/s2052252519016622

    Article  CAS  Google Scholar 

  674. T. A. Olds, J. Plášil, A. R. Kampf, A. Simonetti, L. R. Sadergaski, Y.-S. Chen, and P. C. Burns. Ewingite: Earth′s most complex mineral. Geology, 2017, 45(11), 1007-1010. https://doi.org/10.1130/g39433.1

    Article  Google Scholar 

  675. A. R. Kampf, J. M. Hughes, B. P. Nash, J. Marty, M. A. Cooper, F. C. Hawthorne, V. Y. Karpenko, L. A. Pautov, and A. A. Agakhanov. Revision of the formulae of wernerbaurite and schindlerite: Ammonium- rather than hydronium-bearing decavanadate minerals. Can. Mineral., 2016, 54(3), 555-558. https://doi.org/10.3749/canmin.1500081

    Article  CAS  Google Scholar 

  676. S. V. Krivovichev. Polyoxometalate clusters in minerals: review and complexity analysis. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2020, 76(4), 618-629. https://doi.org/10.1107/s2052520620007131

    Article  CAS  Google Scholar 

  677. A. K. Cheetham, G. Férey, and T. Loiseau. Open-framework inorganic materials. Angew. Chem., Int. Ed., 1999, 38(22), 3268-3292. https://doi.org/10.1002/(sici)1521-3773(19991115)38:22<3268::aid-anie3268>3.0.co;2-u

    Article  CAS  Google Scholar 

  678. S. V. Krivovichev and A. P. Chernyat′eva. Crystal structure of new compound (Rb,K)2Cu3(P2O7)2. Glas. Phys. Chem., 2016, 42(4), 327-336. https://doi.org/10.1134/s1087659616040088

    Article  CAS  Google Scholar 

  679. I. V. Pekov, N. V. Zubkova, D. I. Belakovskiy, V. O. Yapaskurt, M. F. Vigasina, E. G. Sidorov, and D. Y. Pushcharovsky. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4 and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineral. Mag., 2015, 79(7), 1737-1753. https://doi.org/10.1180/minmag.2015.079.7.02

    Article  Google Scholar 

  680. S. M. Aksenov, E. Y. Borovikova, V. S. Mironov, N. A. Yamnova, A. S. Volkov, D. A. Ksenofontov, O. A. Gurbanova, O. V. Dimitrova, D. V. Deyneko, E. A. Zvereva, O. V. Maximova, S. V. Krivovichev, P. C. Burns, and A. N. Vasiliev. Rb2CaCu6(PO4)4O2, a novel oxophosphate with a shchurovskyite-type topology: synthesis, structure, magnetic properties and crystal chemistry of rubidium copper phosphates. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2019, 75(5), 903-913. https://doi.org/10.1107/s2052520619008527

    Article  CAS  Google Scholar 

  681. P. C. Burns and F. C. Hawthorne. Coordination-geometry structural pathways in Cu2+ oxysalt minerals Can. Mineral., 1995, 33, 889.

  682. A. M. Golubev, E. Brücher, A. Schulz, R. K. Kremer, and R. Glaum. La- and Lu-agardite - preparation, crystal structure, vibrational and magnetic properties. Z. Naturforsch., B, 2020, 75(1/2), 191-199. https://doi.org/10.1515/znb-2019-0189

    Article  CAS  Google Scholar 

  683. S. M. Aksenov, N. V. Chukanov, J. Göttlicher, S. Möckel, D. Varlamov, K. V. Van, and R. K. Rastsvetaeva. New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb-analogue of auriacusite. Phys. Chem. Miner., 2018, 45(1), 39-50. https://doi.org/10.1007/s00269-017-0899-9

    Article  CAS  Google Scholar 

  684. R. Miletich, J. Zemann, and M. Nowak. Reversible hydration in synthetic mixite, BiCu6(OH)6(AsO4)3·nH2O (n ≤ 3): Hydration kinetics and crystal chemistry. Phys. Chem. Miner., 1997, 24(6), 411-422. https://doi.org/10.1007/s002690050055

    Article  CAS  Google Scholar 

  685. J. Majzlan, H. Schlicht, M. Wierzbicka-Wieczorek, G. Giester, H. Pöllmann, B. Brömme, S. Doyle, G. Buth, and C. Bender Koch. A contribution to the crystal chemistry of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous anisotropy. Mineral. Petrol., 2013, 107(2), 221-233. https://doi.org/10.1007/s00710-012-0254-2

    Article  CAS  Google Scholar 

  686. V. K. Sabirov. Crystal structure of synthetic voltaite (K0.90(NH4)0.10)2(Fe3.1902+Fe1.1243+Mg1.686)(Fe0.9383+Mg0.062)2(Al0.98Fe0.023+)(SO4)12·18.9H2O. J. Struct. Chem., 2017, 58(1), 183-187. https://doi.org/10.1134/s0022476617010255

    Article  CAS  Google Scholar 

  687. K. Mereiter. Die Kristallstruktur des Voltaits, K2Fe52+Fe33+Al[SO4]12·18H2O. TMPM, Tschermaks Mineral. Petrogr. Mitt., 1972, 18(3), 185-202. https://doi.org/10.1007/bf01134207

    Article  CAS  Google Scholar 

  688. F. C. Hawthorne, S. V. Krivovichev, and P. C. Burns. The crystal chemistry of sulfate minerals. Rev. Mineral. Geochem., 2000, 40(1), 1-112. https://doi.org/10.2138/rmg.2000.40.1

    Article  CAS  Google Scholar 

  689. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, G. Möhn, V. S. Rusakov, I. V. Pekov, R. Scholz, T. A. Eremina, D. I. Belakovskiy, and J. A. Lorenz. Magnesiovoltaite, K2Mg5Fe3+3Al(SO4)12·18H2O, a new mineral from the Alcaparrosa mine, Antofagasta region, Chile. Eur. J. Mineral., 2016, 28(5), 1005-1017. https://doi.org/10.1127/ejm/2016/0028-2565

    Article  CAS  Google Scholar 

  690. S. M. Aksenov, N. V. Chukanov, J. Göttlicher, R. Hochleitner, E. S. Zarubina, and R. K. Rastsvetaeva. Mn-bearing eleonorite from Hagendorf South pegmatite, Germany: Crystal structure and crystal-chemical relationships with other beraunite-type phosphates. Z. Kristallogr. - Cryst. Mater., 2018, 233(7), 469-477. https://doi.org/10.1515/zkri-2017-2099

    Article  CAS  Google Scholar 

  691. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, C. Schäfer, I. V. Pekov, D. I. Belakovskiy, R. Scholz, L. C. A. de Oliveira, and S. N. Britvin. Eleonorite, Fe63+(PO4)4O(OH)4·6H2O: validation as a mineral species and new data. Mineral. Mag., 2017, 81(1), 61-76. https://doi.org/10.1180/minmag.2016.080.070

    Article  Google Scholar 

  692. N. V. Chukanov, I. V. Pekov, I. E. Grey, J. R. Price, S. N. Britvin, M. G. Krzhizhanovskaya, A. R. Kampf, B. Dünkel, E. Keck, D. I. Belakovskiy, and C. M. MacRae. Zincoberaunite, ZnFe3+5(PO4)4(OH)5·6H2O, a new mineral from the Hagendorf South pegmatite, Germany. Mineral. Petrol., 2017, 111(3), 351-361. https://doi.org/10.1007/s00710-016-0482-y

    Article  CAS  Google Scholar 

  693. J. Sejkora, I. E. Grey, A. R. Kampf, J. R. Price, and J. Čejka. Tvrdýite, Fe2+Fe32+Al3(PO4)4(OH)5(OH2)4·2H2O, a new phosphate mineral from Krásno near Horní Slavkov, Czech Republic. Mineral. Mag., 2016, 80(6), 1077-1088. https://doi.org/10.1180/minmag.2016.080.045

    Article  Google Scholar 

  694. Y. M. Fecia di Cossato, P. Orlandi, and M. Pasero. Manganese-bearing beraunite from Mangualde, Portugal; mineral data and structure refinement. Can. Mineral., 1989, 27, 441.

  695. P. B. Moore. Crystal chemistry of the basic iron phosphates. Am. Mineral., 1970, 55, 135.

  696. P. B. Moore and A. R. Kampf. Beraunite: Refinement, comparative crystal chemistry, and selected bond valences. Z. Kristallogr. - Cryst. Mater., 1992, 201(1-4), 263-282. https://doi.org/10.1524/zkri.1992.201.14.263

    Article  CAS  Google Scholar 

  697. N. V. Chukanov, R. Scholz, S. M. Aksenov, R. K. Rastsvetaeva, I. V. Pekov, D. I. Belakovskiy, K. Krambrock, R. M. Paniago, A. Righi, R. F. Martins, F. M. Belotti, and V. Bermanec. Metavivianite, Fe2+Fe3+2(PO4)2(OH)26H2O: new data and formula revision. Mineral. Mag., 2012, 76(3), 725-741. https://doi.org/10.1180/minmag.2012.076.3.20

    Article  CAS  Google Scholar 

  698. R. L. Frost, M. Weier, and W. G. Lyon. Metavivianite an intermediate mineral phase between vivianite, and ferro/ferristrunzite - a Raman spectroscopic study. Neues Jahrb. Mineral., Monatsh., 2004, 2004(5), 228-240. https://doi.org/10.1127/0028-3649/2004/2004-0228

    Article  CAS  Google Scholar 

  699. P. Schmid-Beurmann, L. Ottolini, F. Hatert, T. Geisler, M. Huyskens, and V. Kahlenberg. Topotactic formation of ferrisicklerite from natural triphylite under hydrothermal conditions. Mineral. Petrol., 2013, 107(4), 501-515. https://doi.org/10.1007/s00710-012-0250-6

    Article  CAS  Google Scholar 

  700. P. D. Moore. Plants which survived glaciation. Nature, 1974, 251(5477), 672-672. https://doi.org/10.1038/251672a0

    Article  Google Scholar 

  701. F. Hatert, P. Keller, F. Lissner, D. Antenucci, and A.-M. Fransolet. First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1–xLix)MnFe2(PO4)3 series (x = 0 to 1). Eur. J. Mineral., 2000, 12(4), 847-857. https://doi.org/10.1127/ejm/12/4/0847

    Article  CAS  Google Scholar 

  702. S. V. Krivovichev, L. P. Vergasova, S. K. Filatov, D. S. Rybin, S. N. Britvin, and V. V. Ananiev. Hatertite, Na2(Ca,Na)(Fe3+, Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. Eur. J. Mineral., 2013, 25(4), 683-691. https://doi.org/10.1127/0935-1221/2013/0025-2311

    Article  CAS  Google Scholar 

  703. O. V. Yakubovich, G. V. Kiryukhina, and O. V. Dimitrova. Crystal chemistry of KCuMn3(VO4)3 in the context of detailed systematics of the alluaudite family. Crystallogr. Rep., 2016, 61(4), 566-575. https://doi.org/10.1134/s1063774516040246

    Article  CAS  Google Scholar 

  704. K. Trad, D. Carlier, L. Croguennec, A. Wattiaux, M. Ben Amara, and C. Delmas. NaMnFe2(PO4)3 alluaudite phase: Synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries. Chem. Mater., 2010, 22(19), 5554-5562. https://doi.org/10.1021/cm1015614

    Article  CAS  Google Scholar 

  705. P. Barpanda, G. Oyama, S. Nishimura, S.-C. Chung, and A. Yamada. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun., 2014, 5(1), 4358. https://doi.org/10.1038/ncomms5358

    Article  CAS  PubMed  Google Scholar 

  706. K. Xu. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev., 2014, 114(23), 11503-11618. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  707. D. Dwibedi, R. B. Araujo, S. Chakraborty, P. P. Shanbogh, N. G. Sundaram, R. Ahuja, and P. Barpanda. Na2.44Mn1.79(SO4)3ries. J. Mater. Chem. A, 2015, 3(36), 18564-18571. https://doi.org/10.1039/c5ta04527d

    Article  CAS  Google Scholar 

  708. L. L. Wong, H. M. Chen, and S. Adams. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na2+Fe2–/2(SO4)3. Phys. Chem. Chem. Phys., 2015, 17(14), 9186-9193. https://doi.org/10.1039/c5cp00380f

    Article  CAS  PubMed  Google Scholar 

  709. Y. Meng, T. Yu, S. Zhang, and C. Deng. Top-down synthesis of muscle-inspired alluaudite N2+2xFe2–x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. J. Mater. Chem. A, 2016, 4(5), 1624-1631. https://doi.org/10.1039/c5ta07696j

    Article  CAS  Google Scholar 

  710. J. Lu, S. Nishimura, and A. Yamada. Polyanionic solid-solution cathodes for rechargeable batteries. Chem. Mater., 2017, 29(8), 3597-3602. https://doi.org/10.1021/acs.chemmater.7b00226

    Article  CAS  Google Scholar 

  711. S. M. Aksenov, N. A. Yamnova, N. A. Kabanova, A. S. Volkov, O. A. Gurbanova, D. V. Deyneko, O. V. Dimitrova, and S. V. Krivovichev. Topological features of the alluaudite-type framework and its derivatives: synthesis and crystal structure of NaMnNi2(H2/3PO4)3. Crystals, 2021, 11(3), 237. https://doi.org/10.3390/cryst11030237

    Article  CAS  Google Scholar 

  712. H.-K. Jeong, S. Nair, T. Vogt, L. C. Dickinson, and M. Tsapatsis. A highly crystalline layered silicate with three-dimensionally microporous layers. Nat. Mater., 2003, 2(1), 53-58. https://doi.org/10.1038/nmat795

    Article  CAS  Google Scholar 

  713. W. J. Roth, P. Nachtigall, R. E. Morris, and J. Čejka. Two-dimensional zeolites: Current status and perspectives. Chem. Rev., 2014, 114(9), 4807-4837. https://doi.org/10.1021/cr400600f

    Article  CAS  PubMed  Google Scholar 

  714. M. Sardar, M. Maharana, M. Manna, and S. Sen. 2D zeolites. In: Layered 2D Advanced Materials and Their Allied Applications. Wiley, 2020, 193-210. https://doi.org/10.1002/9781119655190.ch9

  715. K.-F. Hesse, F. Liebau, and S. Merlino. Crystal structure of rhodesite, HK1–xNax+2yCa2–y{lB,3,22}[Si8O19]·(6 – z)H2O, from three localities and its relation to other silicates with dreier double layers. Z. Kristallogr., 1992, 199(1/2), 25-48. https://doi.org/10.1524/zkri.1992.199.1-2.25

    Article  CAS  Google Scholar 

  716. I. V. Pekov, N. V. Zubkova, N. V. Chukanov, V. V. Sharygin, and D. Y. Pushcharovsky. Crystal chemistry of delhayelite and hydrodelhayelite. Dokl. Earth Sci., 2009, 428(1), 1216-1221. https://doi.org/10.1134/s1028334x09070393

    Article  CAS  Google Scholar 

  717. R. K. Rastsvetaeva, S. M. Aksenov, and N. V. Chukanov. Crystal structure of günterblassite, a new mineral with a triple tetrahedral layer. Dokl. Chem., 2012, 442(2), 57-62. https://doi.org/10.1134/s0012500812020115

    Article  CAS  Google Scholar 

  718. S. M. Aksenov, N. V. Chukanov, I. V. Pekov, R. K. Rastsvetaeva, and A. E. Hixon. Crystal structure and topological features of manganonaujakasite, a mineral with microporous heteropolyhedral framework related to AlPO-25 (ATV). Microporous Mesoporous Mater., 2019, 279, 128-132. https://doi.org/10.1016/j.micromeso.2018.12.019

    Article  CAS  Google Scholar 

  719. J. W. Richardson, J. V. Smith, and J. J. Pluth. AlPO4-25: framework topology, topotactic transformation from AlPO4-21, and high-low displacive transition. J. Phys. Chem., 1990, 94(9), 3365-3367. https://doi.org/10.1021/j100372a002

    Article  CAS  Google Scholar 

  720. S. V. Krivovichev. Structural and topological complexity of zeolites: An information-theoretic analysis. Microporous Mesoporous Mater., 2013, 171, 223-229. https://doi.org/10.1016/j.micromeso.2012.12.030

    Article  CAS  Google Scholar 

  721. I. V. Rozhdestvenskaya and S. V. Krivovichev. Tubular chains in the structures of natural and synthetic silicates. Crystallogr. Rep., 2011, 56(6), 1007-1018. https://doi.org/10.1134/s1063774511060228

    Article  CAS  Google Scholar 

  722. I. V. Rozhdestvenskaya, I. I. Bannova, L. V. Nikishova, and T. V. Soboleva. The crystal structure of fenaksite K2Na2Fe2Si8O20. Dokl. Earth Sci., 2004, 398, 1029-1033.

  723. O. Karimova and P. C. Burns. Silicate tubes in the crystal structure of manaksite. In: Minerals as Advanced Materials I / Ed. S. V. Krivovichev. Berlin, Heidelberg, Germany: Springer, 2008, 153-156. https://doi.org/10.1007/978-3-540-77123-4_20

    Chapter  Google Scholar 

  724. J. M. M. Pozas, G. Rossi, and V. Tazzoli. Re-examination and crystal structure analysis of litidionite. Am. Mineral., 1975, 60, 471-474.

  725. S. M. Aksenov, R. K. Rastsvetaeva, N. V. Chukanov, and U. Kolitsch. Structure of calcinaksite KNa[Ca(H2O)][Si4Ol0], the first hydrous member of the litidionite group of silicates with [Si8O20]8– tubes. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2014, 70(4), 768-775. https://doi.org/10.1107/s2052520614012992

    Article  CAS  Google Scholar 

  726. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, G. Blass, D. A. Varlamov, I. V. Pekov, D. I. Belakovskiy, and V. V. Gurzhiy. Calcinaksite, KNaCa(Si4O10) H2O, a new mineral from the Eifel volcanic area, Germany. Mineral. Petrol., 2015, 109(4), 397-404. https://doi.org/10.1007/s00710-015-0376-4

    Article  CAS  Google Scholar 

  727. G. Durand, S. Vilminot, M. Richard-Plouet, A. Derory, J. P. Lambour, and M. Drillon. Magnetic behavior of Na2MSi4O10 (M = Co, Ni) compounds. J. Solid State Chem., 1997, 131(2), 335-340. https://doi.org/10.1006/jssc.1997.7389

    Article  CAS  Google Scholar 

  728. K. Kawamura and A. Kawahara. The crystal structure of synthetic copper sodium silicate: CuNa2Si4O10. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, 33(4), 1071-1075. https://doi.org/10.1107/s0567740877005391

    Article  Google Scholar 

  729. M. Cadoni and G. Ferraris. Synthesis and crystal structure of Na2MnSi4O10: Relationship with the manaksite group. Rend. Lincei, 2011, 22(3), 225-234. https://doi.org/10.1007/s12210-011-0125-5

    Article  Google Scholar 

  730. P. Brandão, J. Rocha, M. S. Reis, A. M. dos Santos, and R. Jin. Magnetic properties of compounds. J. Solid State Chem., 2009, 182(2), 253-258. https://doi.org/10.1016/j.jssc.2008.10.024

    Article  CAS  Google Scholar 

  731. G. V. Kiriukhina, O. V. Yakubovich, I. N. Dovgaliuk, O. V. Dimitrova, and A. S. Volkov. Crystal structure of the potassium-rich analog of manaksite K(K0.72Na0.28)Mn[Si4O10] based on the low-temperature synchrotron experiment data. Crystallogr. Rep., 2020, 65(1), 33-39. https://doi.org/10.1134/s1063774520010101

    Article  CAS  Google Scholar 

  732. D. Schmidmair, V. Kahlenberg, and A. Grießer. K2CaSi4O10: A novel phase in the ternary system K2O–CaO–SiO2 and member of the litidionite group of crystal structures. J. Am. Ceram. Soc., 2018, 101(2), 919-927. https://doi.org/10.1111/jace.15230

    Article  CAS  Google Scholar 

  733. I. V. Rozhdestvenskaya and L. V. Nikishova. Crystal structure of Na(Ca,Sr)2Si4O10F strontium agrellite from Yakutian charoitites: Agrellite polytypes. Crystallogr. Rep., 1998, 43, 589-597.

  734. S. M. Aksenov, S. A. Mackley, D. V. Deyneko, V. K. Taroev, V. L. Tauson, R. K. Rastsvetaeva, and P. C. Burns. Crystal chemistry of compounds with lanthanide based microporous heteropolyhedral frameworks: Synthesis, crystal structures, and luminescence properties of novel potassium cerium and erbium silicates. Microporous Mesoporous Mater., 2019, 284, 25-35. https://doi.org/10.1016/j.micromeso.2019.04.006

    Article  CAS  Google Scholar 

  735. C. M. Kowalchuk, F. A. A. Paz, D. Ananias, P. Pattison, L. D. Carlos, and J. Rocha. Photoluminescent microporous lanthanide silicate AV-21 frameworks. Chem. - Eur. J., 2008, 14(27), 8157-8168. https://doi.org/10.1002/chem.200800172

    Article  CAS  Google Scholar 

  736. B. R. Figueiredo, A. A. Valente, Z. Lin, and C. M. Silva. Photoluminescent porous and layered lanthanide silicates: A review. Microporous Mesoporous Mater., 2016, 234meso.2016.07.004

  737. J. Rocha. Microporous materials containing lanthanide metals. Curr. Opin. Solid State Mater. Sci., 2003, 7(3), 199-205. https://doi.org/10.1016/j.cossms.2003.10.003

    Article  CAS  Google Scholar 

  738. V. Kahlenberg and T. Manninger. K9Y3[Si12O32]F2. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2014, 70(2), i11. https://doi.org/10.1107/s1600536814001470

    Article  CAS  Google Scholar 

  739. S. M. Haile, B. J. Wuensch, T. Siegrist, and R. A. Laudise. Conductivity and crystallography of new alkali rare-earth silicates synthesized as possible fast-ion conductors. Solid State Ionics, 1992, 53-56, 1292-1301. https://doi.org/10.1016/0167-2738(92)90328-m

    Article  CAS  Google Scholar 

  740. S. M. Haile, B. J. Wuensch, T. Siegrist, and R. A. Laudise. Hydrothermal synthesis of new alkali silicates I. Potassium neodymium phases. J. Cryst. Growth, 1993, 131(3/4), 352-372. https://doi.org/10.1016/0022-0248(93)90185-y

    Article  CAS  Google Scholar 

  741. S. M. Haile, B. J. Wuensch, and T. Siegrist. The structure and conductivity of K8Nd3Si12O32(OH): A layered silicate with paths for possible fast-ion condution. J. Solid State Chem., 1999, 148(2), 406-418. https://doi.org/10.1006/jssc.1999.8466

    Article  CAS  Google Scholar 

  742. D. Ananias, M. Kostova, F. A. A. Paz, A. N. C. Neto, R. T. De Moura, O. L. Malta, L. D. Carlos, and J. Rocha. Molecule-like Eu3+-dimers embedded in an extended system exhibit unique photoluminescence properties. J. Am. Chem. Soc., 2009, 131(24), 8620-8626. https://doi.org/10.1021/ja901820z

    Article  CAS  PubMed  Google Scholar 

  743. V. K. Taroev, A. A. Kashaev, T. Malcherek, J. Goettlicher, E. V. Kaneva, A. D. Vasiljev, L. F. Suvorova, D. S. Suvorova, and V. L. Tauson. Crystal structures of new potassium silicates and aluminosilicates of Sm, Tb, Gd, and Yb and their relation to the armstrongite (CaZr(Si6O15)·3H2O) structure. J. Solid State Chem., 2015, 227, 196-203. https://doi.org/10.1016/j.jssc.2015.03.004

    Article  CAS  Google Scholar 

  744. M.-F. Tang, P.-Y. Chiang, Y.-H. Su, Y.-C. Jung, G.-Y. Hou, B.-C. Chang, and K.-H. Lii. Flux synthesis, crystal structures, and luminescence properties of salt-inclusion lanthanide silicates: [K9F2][Ln3Si12O32] (Ln = Sm, Eu, Gd). Inorg. Chem., 2008, 47(19), 8985-8989. https://doi.org/10.1021/ic801007k

    Article  CAS  PubMed  Google Scholar 

  745. M. Sebais, O. S. Filipenko, E. A. Pobedimskaya, V. I. Ponomarev, B. N. Litvin, and N. V. Belov. Kristallokhimiya tverdykh elektrolitov sostava K8–xTR3(Si6O16)2(OH)1–x (Crystal chemistry of solid electrolytes with the composition K8–xTR3(Si6O16)2(OH)1–x). Kristallografiya, 1983, 28(5), 880-885. [In Russian]

  746. A. P. Zorina, E. L. Belokoneva, and O. V. Dimitrova. K8Gd3Si12O32Cl·2H2O, a new member of the family of porous silicates with K and RE elements. Crystallogr. Rep., 2014, 59(1), 36-40. https://doi.org/10.1134/s1063774514010209

    Article  CAS  Google Scholar 

  747. D. Y. Pushcharovskii, A. M. Dago, E. A. Pobedimskaya, and N. V. Belov. Kristallicheskaya struktura polimorfizma K8Yb3(Si6O16)2(OH) radikalov (Si3O8) (The crystal structure of K8Yb3(Si6O16)2(OH) polymorphism of the radicals (Si3O8)). Dokl. Akad. Nauk SSSR, 1981, 258, 1111-1115. [In Russian]

  748. A. N. Kravtsova, A. A. Guda, A. V. Soldatov, J. Goettlicher, V. K. Taroev, A. A. Kashaev, L. F. Suvorova, and V. L. Tauson. X-ray spectral diagnostics of synthetic lanthanide silicates. Opt. Spectrosc., 2015, 119(6), 982-986. https://doi.org/10.1134/s0030400x15110156

    Article  CAS  Google Scholar 

  749. A. N. Kravtsova, A. A. Guda, J. Goettlicher, A. V Soldatov, V. K. Taroev, A. A. Kashaev, L. F. Suvorova, and V. L. Tauson. Valence determination of rare earth elements in lanthanide silicates by L3-XANES spectroscopy. J. Phys. Conf. Ser., 2016, 712, 012096. https://doi.org/10.1088/1742-6596/712/1/012096

    Article  CAS  Google Scholar 

  750. H. Li and O. M. Yaghi. Transformation of germanium dioxide to microporous germanate 4-connected nets. JAm. Chem. Soc., 1998, 120(40), 10569/10570. https://doi.org/10.1021/ja982384n

    Article  CAS  Google Scholar 

  751. M. Hernández-Rodríguez, J. L. Jordá, F. Rey, and A. Corma. Synthesis and structure determination of a new microporous zeolite with large cavities connected by small pores. J. Am. Chem. Soc., 2012, 134(32), 13232-13235. https://doi.org/10.1021/ja306013k

    Article  CAS  PubMed  Google Scholar 

  752. J. W. Richardson, J. J. Pluth, and J. V. Smith. Microporous aluminophosphate AlPO4-22: A framework topology with two new building units, and encapsulated phosphate. Naturwissenschaften, 1989, 76(10), 467-469. https://doi.org/10.1007/bf00366224

    Article  CAS  Google Scholar 

  753. D. Ananias, M. Kostova, F. A. Almeida Paz, A. Ferreira, L. D. Carlos, J. Klinowski, and J. Rocha. Photoluminescent layered lanthanide silicates. J. Am. Chem. Soc., 2004, 126(33), 10410-10417. https://doi.org/10.1021/ja047905n

    Article  CAS  PubMed  Google Scholar 

  754. P.-Y. Chiang, T.-W. Lin, J.-H. Dai, B.-C. Chang, and K.-H. Lii. Flux synthesis, crystal structure, and luminescence properties of a new europium fluoride–silicate: K5Eu2Fsi4O13. Inorg. Chem., 2007, 46(9), 3619-3622. https://doi.org/10.1021/ic0700304

    Article  CAS  PubMed  Google Scholar 

  755. R. K. Rastsvetaeva, S. M. Aksenov, and V. K. Taroev. Crystal structures of endotaxic phases in europium potassium silicate having a pellyite unit cell. Crystallogr. Rep., 2010, 55(6), 1041-1049. https://doi.org/10.1134/s1063774510060222

    Article  CAS  Google Scholar 

  756. R. K. Rastsvetaeva and S. M. Aksenov. New phases of K, Eu-silicate in the family of compounds with the orthorhombic pellyite-like unit cell. Bulg. Chem. Commun., 2011, 43(2), 308-315.

  757. H. Jacobsen and G. Meyer. Synthesis, crystal growth and structure of KEu2[Si4O10]F. Z. Kristallogr. - Cryst. Mater., 1994, 209(4), 348-350. https://doi.org/10.1524/zkri.1994.209.4.348

    Article  CAS  Google Scholar 

  758. W. Liu, Y. Ji, X. Bao, Y. Wang, B. Li, X. Wang, X. Zhao, X. Liu, and S. Feng. Novel open-framework europium silicates prepared under high-temperature and high-pressure conditions. Dalton Trans., 2014, 43(37), 13892-13898. https://doi.org/10.1039/c4dt01707b

    Article  CAS  PubMed  Google Scholar 

  759. S. M. Aksenov, R. K. Rastsvetaeva, V. A. Rassylov, N. B. Bolotina, V. K. Taroev, and V. L. Tauson. Synthesis, crystal structure and luminescence properties of novel microporous europium silicate НK6Eu3+[Si10O25] with a framework formed of nano-scale tubes. Microporous Mesoporous Mater., 2013, 182, 95-101. https://doi.org/10.1016/j.micromeso.2013.08.021

    Article  CAS  Google Scholar 

  760. O. G. Karpov, E. A. Pobedimskaya, and N. V. Belov. Kristallicheskaya struktura silikata K, Ce s trekhmernym anionnym karkasom: K2CeSi6O15 (Crystal structure of a K, Ce silicate with a three-dimensional anion framework: K2CeSi6O15). Kristallografiya, 1977, 22, 382-384. [In Russian]

  761. S. M. Haile and B. J. Wuensch. X-ray diffraction study of K3NdSi7O17: a new framework silicate with a linear Si–O–Si bond. Acta Crystallogr., Sect. B: Struct. Sci., 2000, 56(5), 773-779. https://doi.org/10.1107/s0108768100006704

    Article  Google Scholar 

  762. S. M. Aksenov and R. K. Rastsvetaeva. Crystal-structure refinement of zirconium-rich eudialyte and its place among calcium-poor eudialyte-group minerals. Crystallogr. Rep., 2013, 58(5), 671-677. https://doi.org/10.1134/s1063774513040020

    Article  CAS  Google Scholar 

  763. E. V. Kaneva, L. F. Suvorova, and V. L. Tauson. Crystal structures of the newly synthesized KDy and KTb aluminosilicates. J. Struct. Chem., 2018, 59(2), 377-383. https://doi.org/10.1134/s0022476618020178

    Article  CAS  Google Scholar 

  764. E. V. Kaneva, L. F. Suvorova, and V. L. Tauson. Crystal structures of novel synthesized potassium silicates and aluminosilicates with rare earth elements: K3REESi6O15·nH2O (REE = Tm, Eu) and K2REEAlSi4O12·nH2O (REE = Pr, Tb, Dy). J. Chem. Crystallogr., 2020, 50(3), 219-224. https://doi.org/10.1007/s10870-019-00793-6

    Article  CAS  Google Scholar 

  765. U. Betke and M. S. Wickleder. Oleum and sulfuric acid as reaction media: The actinide examples UO2(S2O7)-lt (low temperature), UO2(S2O7)-ht (high temperature), UO2(HSO4)2, An(SO4)2 (An = Th, U), Th4(HSO4)2(SO4)7 and Th(HSO4)2(SO4). Eur. J. Inorg. Chem., 2012, 2012(2), 306-317. https://doi.org/10.1002/ejic.201100975

    Article  CAS  Google Scholar 

  766. G. Lundgren. The Crystal Structure of U6O4(OH)4(SO4)6. Ark Kemi, 1953, 5, 421-428.

  767. G. Lundgren. The Crystal Structure of U(OH)2SO4. Ark Kemi, 1952, 4, 421-428.

  768. L. Zhang, S. M. Aksenov, A. M. Kokot, S. N. Perry, T. A. Olds, and P. C. Burns. Crystal chemistry and structural complexity of uranium(IV) sulfates: Synthesis of U3H2(SO4)7(H2O)5·3H2O and U3(UO2)0.2(SO4)6(OH)0.42.3H2O with framework structures by the photochemical reduction of uranyl. Inorg. Chem., 2020, 59(9), 5813-5817. https://doi.org/10.1021/acs.inorgchem.0c00385

    Article  CAS  PubMed  Google Scholar 

  769. M. O′Keeffe and O. M. Yaghi. Germanate zeolites: Contrasting the behavior of germanate and silicate structures built from cubic T8O20 units (T = Ge or Si). Chem. - Eur. J., 1999, 5(10), 2796-2801. https://doi.org/10.1002/(sici)1521-3765(19991001)5:10<2796::aid-chem2796>3.0.co;2-6

    Article  Google Scholar 

  770. K. E. Christensen. Design of open-framework germanates. Crystallogr. Rev., 2010, 16(2), 91-104. https://doi.org/10.1080/08893110903428043

    Article  Google Scholar 

  771. F. Dal Bo, S. M. Aksenov, and P. C. Burns. A novel family of microporous uranyl germanates: Framework topology and complexity of the crystal structures. J. Solid State Chem., 2019, 271, 126-134. https://doi.org/10.1016/j.jssc.2018.12.044

    Article  CAS  Google Scholar 

  772. J. M. Morrison, L. J. Moore-Shay, and P. C. Burns. U(VI) uranyl cation–cation interactions in framework germanates. Inorg. Chem., 2011, 50(6), 2272-2277. https://doi.org/10.1021/ic1019444

    Article  CAS  PubMed  Google Scholar 

  773. J. Ling, J. M. Morrison, M. Ward, K. Poinsatte-Jones, and P. C. Burns. Syntheses, structures, and characterization of open-framework uranyl germanates. Inorg. Chem., 2010, 49(15), 7123-7128. https://doi.org/10.1021/ic1010242

    Article  CAS  PubMed  Google Scholar 

  774. H. Li, P. Kegler, D. Bosbach, and E. V. Alekseev. Hydrothermal synthesis, study, and classification of microporous uranium silicates and germanates. Inorg. Chem., 2018, 57(8), 4745-4756. https://doi.org/10.1021/acs.inorgchem.8b00466

    Article  CAS  PubMed  Google Scholar 

  775. Q. B. Nguyen, C.-L. Chen, Y.-W. Chiang, and K.-H. Lii. Cs3UGe7O18: A pentavalent uranium germanate containing four- and six-coordinate germanium. Inorg. Chem., 2012, 51(6), 3879-3882. https://doi.org/10.1021/ic3000872

    Article  CAS  PubMed  Google Scholar 

  776. J. P. Legros and Y. Jeannin. Coordination de l′uranium par l′ion germanate. II. Structure du germanate d′uranyle dihydraté (UO2)2GeO4(H2O)2. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, 31(4), 1140-1143. https://doi.org/10.1107/s0567740875004670

    Article  Google Scholar 

  777. C.-H. Lin, C.-S. Chen, A. A. Shiryaev, Y. V. Zubavichus, and K.-H. Lii. K3(U3O6)(Si2O7) and Rb3(U3O6)(Ge2O7): A pentavalent-uranium silicate and germanate. Inorg. Chem., 2008, 47(11), 4445-4447. https://doi.org/10.1021/ic800300v

    Article  CAS  PubMed  Google Scholar 

  778. C. A. Juillerat, E. E. Moore, G. Morrison, M. D. Smith, T. Besmann, and H.-C. zur Loye. Versatile uranyl germanate framework hosting 12 different alkali halide 1D salt inclusions. Inorg. Chem., 2018, 57(18), 11606-11615. https://doi.org/10.1021/acs.inorgchem.8b01729

    Article  CAS  PubMed  Google Scholar 

  779. H. Li, E. M. Langer, P. Kegler, G. Modolo, and E. V. Alekseev. Formation of open framework uranium germanates: The influence of mixed molten flux and charge density dependence in U-silicate and U-germanate families. Inorg. Chem., 2018, 57(17), 11201-11216. https://doi.org/10.1021/acs.inorgchem.8b01781

    Article  CAS  PubMed  Google Scholar 

  780. C.-H. Lin and K.-H. Lii. A3(U2O4)(Ge2O7) (A = Rb, Cs): Mixed-valence uranium(V,VI) germanates. Angew. Chem., Int. Ed., 2008, 47(45), 8711-8713. https://doi.org/10.1002/anie.200803658

    Article  CAS  Google Scholar 

  781. C.-L. Chen, Q. B. Nguyen, C.-S. Chen, and K.-H. Lii. Mixed-valence uranium germanate and silicate: Csx(UVO)(UIV/VO)2(Ge2O7)2 (x = 3.18) and Cs4(UVO)(UIV/VO)2(Si2O7)2. Inorg. Chem., 2012, 51(14), 7463-7465. https://doi.org/10.1021/ic301091f

    Article  CAS  PubMed  Google Scholar 

  782. C.-H. Lin, R.-K. Chiang, and K.-H. Lii. Synthesis of thermally stable extra-large pore crystalline materials: A uranyl germanate with 12-ring channels. J. Am. Chem. Soc., 2009, 131(6), 2068-2069. https://doi.org/10.1021/ja8084143

    Article  CAS  PubMed  Google Scholar 

  783. Q. B. Nguyen, H.-K. Liu, W.-J. Chang, and K.-H. Lii. Cs8UIV(UVIO2)3(Ge3O9)3·3H2O: A mixed-valence uranium germanate with 9-ring channels. Inorg. Chem., 2011, 50(10), 4241-4243. https://doi.org/10.1021/ic200508v

    Article  CAS  PubMed  Google Scholar 

  784. Q. B. Nguyen and K.-H. Lii. Cs4UGe8O20dinate germanium. Inorg. Chem., 2011, 50(20), 9936-9938. https://doi.org/10.1021/ic201789f

    Article  CAS  PubMed  Google Scholar 

  785. S. Obbade, C. Dion, M. Saadi, S. Yagoubi, and F. Abraham. Pb(UO2)(V2O7), a novel lead uranyl divanadate. JSolid State Chem., 2004, 177(11), 3909-3917. https://doi.org/10.1016/j.jssc.2004.07.055

    Article  CAS  Google Scholar 

  786. B. Ewald, Y.-X. Huang, and R. Kniep. Structural chemistry of borophosphates, metalloborophosphates, and related compounds. Z. Anorg. Allg. Chem., 2007, 633(10), 1517-1540. https://doi.org/10.1002/zaac.200700232

    Article  CAS  Google Scholar 

  787. O. A. Gurbanova and E. L. Belokoneva. Comparative crystal chemical analysis of borophosphates and borosilicates. Crystallogr. Rep., 2007, 52(4), 624-633. https://doi.org/10.1134/s1063774507040098

    Article  CAS  Google Scholar 

  788. O. Yakubovich, I. Steele, and W. Massa. Genetic aspects of borophosphate crystal chemistry. Z. Kristallogr. - Cryst. Mater., 2013, 228(10). https://doi.org/10.1524/zkri.2013.1631

    Article  Google Scholar 

  789. M. Li and A. Verena-Mudring. New developments in the synthesis, structure, and applications of borophosphates and metalloborophosphates. Cryst. Growth Des., 2016, 16(4), 2441-2458. https://doi.org/10.1021/acs.cgd.5b01035

    Article  CAS  Google Scholar 

  790. S. M. Aksenov, J. S. Mironova, N. A. Yamnova, A. S. Volkov, O. V. Dimitrova, O. A. Gurbanova, D. V. Deyneko, V. A. Blatov, and S. V. Krivovichev. Polymorphism and topological features of compounds with the general formula A1–x+Bx2+{Mx2+M1–x3+[BP2O8(OH)]} (where x = 0, 1): Synthesis and structure refinement of Rb{V[BP2O8(OH)]}, analysis of the ion-migration paths, and comparative crystal chemistry of vanadium borophosphates. J. Solid State Chem., 2022, 308, 122831. https://doi.org/10.1016/j.jssc.2021.122831

    Article  CAS  Google Scholar 

  791. Z.-S. Lin, S. Hoffmann, Y.-X. Huang, Y. Prots, J.-T. Zhao, and R. Kniep. Crystal structure of trilithium divanadium(III) borophosphate hydrogenphosphate, Li3V2[BP3O12(OH)][HPO4]. Z. Kristallogr. - New Cryst. Struct., 2010, 225(1), 3/4. https://doi.org/10.1524/ncrs.2010.0002

    Article  CAS  Google Scholar 

  792. L.-J. Zhang, Y.-Y. Li, P.-F. Liu, and L. Chen. Li3Cs2M2B3P6O24 (M = Pb, Sr): borophosphates with double six-membered ring of [BP2O8]3–. Dalton Trans., 2016, 45(16), 7124-7130. https://doi.org/10.1039/c6dt00498a

    Article  CAS  PubMed  Google Scholar 

  793. M. A. Khan, Y.-Y. Li, H. Lin, L.-J. Zhang, P.-F. Liu, H.-J. Zhao, R.-H. Duan, J.-Q. Wang, and L. Chen. Syntheses of six and twelve membered borophosphate ring structure with nonlinear optical activity. J. Solid State Chem., 2016, 243, 259-266. https://doi.org/10.1016/j.jssc.2016.05.030

    Article  CAS  Google Scholar 

  794. T. Hasegawa and H. Yamane. Synthesis, crystal structure and lithium ion conduction of Li3BP2O8. Dalton Trans., 2014, 43(5), 2294-2300. https://doi.org/10.1039/c3dt52917g

    Article  CAS  PubMed  Google Scholar 

  795. N. A. Yamnova, S. M. Aksenov, E. Y. Borovikova, A. S. Volkov, O. A. Gurbanova, O. V. Dimitrova, and P. C. Burns. A novel sodium and chromium borophosphate Na{Cr[BP2O7(OH)3]}: Synthesis, crystal structure, hydrogen bonding, and comparative crystal chemistry. Crystallogr. Rep., 2019, 64(2), 228-238. https://doi.org/10.1134/s1063774519020342

    Article  CAS  Google Scholar 

  796. J. Zheng and A. Zhang. Lithium diaquanickel(II) catena-borodiphosphate(V) monohydrate. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, 65(6), i42. https://doi.org/10.1107/s1600536809014652

    Article  CAS  Google Scholar 

  797. X. Yang, H. Zhong, Y. Zhu, J. Shen, and C. Li. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Trans., 2013, 42(39), 14324. https://doi.org/10.1039/c3dt51686e

    Article  CAS  PubMed  Google Scholar 

  798. C. Biagioni, C. Capalbo, and M. Pasero. Nomenclature tunings in the hollandite supergroup. Eur. J. Mineral., 2013, 25(1), 85-90. https://doi.org/10.1127/0935-1221/2013/0025-2255

    Article  CAS  Google Scholar 

  799. N. V. Chukanov, S. M. Aksenov, S. Jančev, I. V. Pekov, J. Göttlicher, Y. S. Polekhovsky, V. S. Rusakov, Y. V. Nelyubina, and K. V. Van. A new mineral species ferricoronadite, Pb[Mn64+(Fe3+, Mn3+)2]O16: Mineralogical characterization, crystal chemistry and physical properties. Phys. Chem. Miner., 2016, 43(7), 503-514. https://doi.org/10.1007/s00269-016-0811-z

    Article  CAS  Google Scholar 

  800. M. Pasero. A short outline of the tunnel oxides. Rev. Mineral. Geochem., 2005, 57(1), 291-305. https://doi.org/10.2138/rmg.2005.57.9

    Article  CAS  Google Scholar 

  801. N. B. Bolotina, M. T. Dmitrieva, and R. K. Rastvetaeva. Modulated structures of a new natural representative of the hollandite series. Sov. Phys. - Crystallogr., 1992, 37, 311-315.

  802. N. V. Chukanov, M. Pasero, S. M. Aksenov, S. N. Britvin, N. V. Zubkova, L. Yike, and T. Witzke. Columbite supergroup of minerals: Nomenclature and classification. Mineral. Mag., 2023, 87(1), 18-33. https://doi.org/10.1180/mgm.2022.105

    Article  CAS  Google Scholar 

  803. R. L. Linnen and H. Keppler. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth′s crust. Contrib. Mineral. Petrol., 1997, 128(2/3), 213-227. https://doi.org/10.1007/s004100050304

    Article  CAS  Google Scholar 

  804. Q. Zhou, K. Qin, and D. Tang. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, central China: Implications for formation times and ore genesis. J. Asian Earth Sci., 2021, 218, 104879. https://doi.org/10.1016/j.jseaes.2021.104879

    Article  Google Scholar 

  805. Y. A. Morkhova, M. S. Koroleva, A. V. Egorova, A. A. Pimenov, A. G. Krasnov, B. A. Makeev, V. A. Blatov, and A. A. Kabanov. Magnocolumbites Mg1–xMxNb2O6– (x = 0, 0.1, and 0.2; M = Li and Cu) as new oxygen ion conductors: Theoretical assessment and experiment. J. Phys. Chem. C, 2023, 127(1), 52-58. https://doi.org/10.1021/acs.jpcc.2c06631

    Article  CAS  Google Scholar 

  806. S. Pagola, R. E. Carbonio, J. A. Alonso, and M. T. Fernández-Díaz. Crystal structure refinement of MgNb2O6 columbite from neutron powder diffraction data and study of the ternary system MgO–Nb2O5–NbO, with evidence of formation of new reduced pseudobrookite Mg5–xNb4+xO15– (1.14 ≤ ≤ 1.60) phases. J. Solid State Chem., 1997, 134(1), 76-84. https://doi.org/10.1006/jssc.1997.7538

    Article  CAS  Google Scholar 

  807. M. López-Blanco, U. Amador, and F. García-Alvarado. Structural characterization and electrical properties of NiNb2–xTaxO6 (0 ≤ ≤ 2) and some Ti-substituted derivatives. J. Solid State Chem., 2009, 182(7), 1944-1949. https://doi.org/10.1016/j.jssc.2009.04.038

    Article  CAS  Google Scholar 

  808. M. E. Arroyo y de Dompablo, Y.-L. Lee, and D. Morgan. First principles investigation of oxygen vacancies in columbite MNb2O6 (M = Mn, Fe, Co, Ni, Cu). Chem. Mater., 2010, 22(3), 906-913. https://doi.org/10.1021/cm901723j

    Article  CAS  Google Scholar 

  809. R. C. Pullar. The synthesis, properties, and applications of columbite niobates (M2+Nb2O6view. J. Am. Ceram. Soc., 2009, 92(3), 563-577. https://doi.org/10.1111/j.1551-2916.2008.02919.x

    Article  CAS  Google Scholar 

  810. A. P. Topnikova, T. A. Eremina, E. L. Belokoneva, O. V. Dimitrova, A. S. Volkov, and S. M. Aksenov. Synthesis, crystal structure and topological features of microporous “anti-zeolite” Yb3(BO3)(OH)6·2.1H2O, a new cubic borate with isolated BO3 groups. Microporous Mesoporous Mater., 2020, 300, 110147. https://doi.org/10.1016/j.micromeso.2020.110147

    Article  CAS  Google Scholar 

  811. S. V. Rashchenko, T. B. Bekker, V. V. Bakakin, Y. V. Seryotkin, E. A. Simonova, and S. V. Goryainov. New fluoride borate with ′anti-zeolite′ structure: A possible link to Ba3(BO3)2. J. Alloys Compd., 2017, 694, 1196-1200. https://doi.org/10.1016/j.jallcom.2016.10.119

    Article  CAS  Google Scholar 

  812. S. V. Rashchenko and T. B. Bekker. Crystal chemistry of novel “antizeolite” structures. J. Struct. Chem., 2021, 62(12), 1935-1945. https://doi.org/10.1134/s002247662112012x

    Article  CAS  Google Scholar 

  813. T. B. Bekker, T. M. Inerbaev, A. P. Yelisseyev, V. P. Solntsev, S. V. Rashchenko, A. V. Davydov, A. F. Shatskiy, and K. D. Litasov. Experimental and ab initio studies of intrinsic defects in “antizeolite” borates with a Ba12(BO3)66+ framework and their influence on properties. Inorg. Chem., 2020, 59(18), 13598-13606. https://doi.org/10.1021/acs.inorgchem.0c01966

    Article  CAS  PubMed  Google Scholar 

  814. T. B. Bekker, S. V. Rashchenko, V. P. Solntsev, A. P. Yelisseyev, A. A. Kragzhda, V. V. Bakakin, Y. V. Seryotkin, A. E. Kokh, K. A. Kokh, and A. B. Kuznetsov. Growth and optical properties of LixNa1–xBa12(BO3)7F4 fluoride borates with “antizeolite” structure. Inorg. Chem., 2017, 56(9), 5411-5419. https://doi.org/10.1021/acs.inorgchem.7b00520

    Article  CAS  PubMed  Google Scholar 

  815. T. Bekker, V. Solntsev, A. Yelisseyev, A. Davydov, and S. Rashchenko. Crystal chemical design of functional fluoride borates with “antizeolite” structure. Cryst. Growth Des., 2020, 20(6), 4100-4107. https://doi.org/10.1021/acs.cgd.0c00368

    Article  CAS  Google Scholar 

  816. V. P. Solntsev, T. B. Bekker, A. V. Davydov, A. P. Yelisseyev, S. V. Rashchenko, A. E. Kokh, V. D. Grigorieva, and S.-H. Park. Optical and magnetic properties of Cu-containing borates with “antizeolite” structure. J. Phys. Chem. C, 2019, 123(7), 4469-4474. https://doi.org/10.1021/acs.jpcc.9b00355

    Article  CAS  Google Scholar 

  817. T. B. Bekker, V. P. Solntsev, S. V. Rashchenko, A. P. Yelisseyev, A. V. Davydov, A. A. Kragzhda, A. E. Kokh, A. B. Kuznetsov, and S. Park. Nature of the color of borates with «anti-zeolite» structure. Inorg. Chem., 2018, 57(5), 2744-2751. https://doi.org/10.1021/acs.inorgchem.7b03134

    Article  CAS  PubMed  Google Scholar 

  818. E. L. Belokoneva, T. A. Eremina, D. G. Koshchug, O. V. Dimitrova, and A. S. Volkov. Cubic Fd-3c Ba8{Ni,Mn}4[BP3O11(OH)2]4 with anionic units of four-octahedral clusters and four borophosphate groups embedded into Ba-cations medium. Solid State Sci., 2019, 98, 106013. https://doi.org/10.1016/j.solidstatesciences.2019.106013

    Article  CAS  Google Scholar 

  819. M. O′Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res., 2008, 41(12), 1782-1789. https://doi.org/10.1021/ar800124u

    Article  CAS  PubMed  Google Scholar 

  820. D. A. Banaru, W. Hornfeck, S. M. Aksenov, and A. M. Banaru. On the origin of the combinatorial complexity of the crystal structures with 0D, 1D, or 2D primary motifs. CrystEngComm, 2023, 25(14), 2144-2158. https://doi.org/10.1039/d2ce01542k

    Article  CAS  Google Scholar 

  821. A. M. Banaru. A fuzzy set of generating contacts in a molecular agglomerate. Moscow Univ. Chem. Bull., 2019, 74(3), 101-105. https://doi.org/10.3103/s0027131419030039

    Article  Google Scholar 

  822. A. M. Banaru. A fuzzy generating set of 2D-space groups. Crystallogr. Rep., 2018, 63(7), 1071-1076. https://doi.org/10.1134/s1063774518070040

    Article  CAS  Google Scholar 

  823. A. M. Banaru, V. R. Shiroky, and D. A. Banaru. The fuzziness of a minimal generating set of Fedorov groups. Crystallogr. Rep., 2021, 66(6), 913-919. https://doi.org/10.1134/s1063774521060043

    Article  CAS  Google Scholar 

  824. A. M. Banaru, D. A. Banaru, and S. M. Aksenov. Structural classes of molecular crystals with a sole bearing contact. J. Struct. Chem., 2022, 63(2), 260-271. https://doi.org/10.1134/s002247662202007x

    Article  CAS  Google Scholar 

  825. A. M. Banaru, A. D. Bond, S. M. Aksenov, and D. A. Banaru. Molecular crystals with a sole bearing contact: structural classes and statistical data. Z. Kristallogr. - Cryst. Mater., 2022, 237(6/7), 271-279. https://doi.org/10.1515/zkri-2022-0017

    Article  CAS  Google Scholar 

  826. F. Aman, A. M. Asiri, W. A. Siddiqui, M. N. Arshad, A. Ashraf, N. S. Zakharov, and V. A. Blatov. Multilevel topological description of molecular packings in 1,2-benzothiazines. CrystEngComm, 2014, 16(10), 1963-1970. https://doi.org/10.1039/c3ce42218f

    Article  CAS  Google Scholar 

  827. W. Hornfeck. On an extension of Krivovichev′s complexity measures. Acta Crystallogr., Sect. A: Found. Adv., 2020, 76(4), 534-548. https://doi.org/10.1107/s2053273320006634

    Article  CAS  Google Scholar 

  828. N. Tateno and A. Kyono. Structural change induced by dehydration in ikaite (CaCO3·6H2O). J. Mineral. Petrol. Sci., 2014, 109(4), 157-168. https://doi.org/10.2465/jmps.140320

    Article  CAS  Google Scholar 

  829. P. N. Gavryushkin, A. B. Belonoshko, N. Sagatov, D. Sagatova, E. Zhitova, M. G. Krzhizhanovskaya, A. Rečnik, E. V. Alexandrov, I. V. Medrish, Z. I. Popov, and K. D. Litasov. Metastable structures of CaCO3 and their role in transformation of calcite to aragonite and postaragonite. Cryst. Growth Des., 2021, 21(1), 65-74. https://doi.org/10.1021/acs.cgd.0c00589

    Article  CAS  Google Scholar 

  830. A. A. Krylov, E. A. Logvina, T. V. Matveeva, E. M. Prasolov, V. F. Sapega, A. L. Demidova, and M. S. Radchenko. Ikait (CaCO3·6H2O) v donnykh otlozheniyakh morya Laptevykh i rol′ anaerobnogo okisleniya metana v etom mineraloobrazovatel′nom protsesse (Ikaite (CaCO3 6H2O) in bottom sediments of the Laptev Sea and the role of anaerobic methane oxidation in this mineral-forming process). Zap. RMO, 2015, 144, 61-75. [In Russian]

  831. S. Ono. Post-aragonite phase transformation in CaCO3 at 40 GPa. Am. Mineral., 2005, 90(4), 667-671. https://doi.org/10.2138/am.2005.1610

    Article  CAS  Google Scholar 

  832. A. R. Oganov, C. W. Glass, and S. Ono. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett., 2006, 241(1/2), 95-103. https://doi.org/10.1016/j.epsl.2005.10.014

    Article  CAS  Google Scholar 

  833. M. Merlini, M. Hanfland, and W. A. Crichton. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth′s mantle. Earth Planet. Sci. Lett., 2012, 333/334, 265-271. https://doi.org/10.1016/j.epsl.2012.04.036

    Article  CAS  Google Scholar 

  834. P. N. Gavryushkin, N. S. Martirosyan, T. M. Inerbaev, Z. I. Popov, S. V. Rashchenko, A. Y. Likhacheva, S. S. Lobanov, A. F. Goncharov, V. B. Prakapenka, and K. D. Litasov. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des., 2017, 17(12), 6291-6296. https://doi.org/10.1021/acs.cgd.7b00977

    Article  CAS  Google Scholar 

  835. P. N. Gavryushkin, N. Sagatov, A. B. Belonoshko, M. V. Banaev, and K. D. Litasov. Disordered aragonite: The new high-pressure, high-temperature phase of CaCO3. J. Phys. Chem. C, 2020, 124(48), 26467-26473. https://doi.org/10.1021/acs.jpcc.0c08309

    Article  CAS  Google Scholar 

  836. D. Sagatova, A. Shatskiy, N. Sagatov, P. N. Gavryushkin, and K. D. Litasov. Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos, 2020, 370/371, 105637. https://doi.org/10.1016/j.lithos.2020.105637

    Article  CAS  Google Scholar 

  837. D. N. Sagatova, A. F. Shatskiy, P. N. Gavryushkin, N. E. Sagatov, and K. D. Litasov. Stability of Ca2CO4-Pnma against the main mantle minerals from ab initio computations. ACS Earth Space Chem., 2021, 5(7), 1709-1715. https://doi.org/10.1021/acsearthspacechem.1c00065

    Article  CAS  Google Scholar 

  838. K. F. Hesse, H. Küppers, and E. Suess. Refinement of the structure of ikaite, CaCO3-6H2O. Z. Kristallogr. - Cryst. Mater., 1983, 163(1-4), 227-232. https://doi.org/10.1524/zkri.1983.163.14.227

    Article  CAS  Google Scholar 

  839. I. P. Swainson. The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery, South Australia. Am. Mineral., 2008, 93(7), 1014-1018. https://doi.org/10.2138/am.2008.2825

    Article  CAS  Google Scholar 

  840. E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. E. Dinnebier, M. Panthöfer, W. Tremel, and U. Kolb. Ab initio structure determination of vaterite by automated electron diffraction. Angew. Chem., Int. Ed., 2012, 51(28), 7041-7045. https://doi.org/10.1002/anie.201200845

    Article  CAS  Google Scholar 

  841. D. A. Banaru, A. M. Banaru, and S. M. M. Aksenov. Structural complexity of polymorphs of calcium carbonate and its crystalline hydrates. J. Struct. Chem., 2022, 63(8), 1291-1303. https://doi.org/10.1134/s0022476622080108

    Article  CAS  Google Scholar 

  842. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Crystallographic analysis of three modifications of CaCO3: calcite, aragonite, vaterite. J. Struct. Chem., 2021, 62(7), 1027-1037. https://doi.org/10.1134/s0022476621070064

    Article  CAS  Google Scholar 

  843. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Crystallographic analysis of a series of inorganic compounds. Russ. Chem. Rev., 2015, 84(4), 393-421. https://doi.org/10.1070/rcr4479

    Article  CAS  Google Scholar 

  844. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Skeletal sublattices of heavy components as a basis of stability of crystal structures. Crystallogr. Rep., 2019, 64(1), 30-35. https://doi.org/10.1134/s1063774519010036

    Article  CAS  Google Scholar 

  845. W. F. Kolbe and A. Smakula. Anisotropy of color centers in calcite. Phys. Rev., 1961, 124(6), 1754-1757. https://doi.org/10.1103/physrev.124.1754

    Article  CAS  Google Scholar 

  846. V. A. Blatov and Y. A. Zakutkin. Comparative topological analysis of simple anhydrous borates, carbonates and nitrates. Z. Kristallogr. - Cryst. Mater., 2002, 217(9), 464-473. https://doi.org/10.1524/zkri.217.9.464.22882

    Article  CAS  Google Scholar 

  847. A. M. Banaru, S. M. Aksenov, and D. A. Banaru. Critical molecular coordination numbers in the structural class P21/c, Z = 4(1). Moscow Univ. Chem. Bull., 2021, 76(5), 325-333. https://doi.org/10.3103/s0027131421050023

    Article  Google Scholar 

  848. P. Bonazzi and L. Bindi. A crystallographic review of arsenic sulfides: effects of chemical variations and changes induced by exposure to light. Z. Kristallogr. - Cryst. Mater., 2008, 223(1/2), 132-147. https://doi.org/10.1524/zkri.2008.0011

    Article  CAS  Google Scholar 

  849. G. V. Gibbs, A. F. Wallace, R. T. Downs, N. L. Ross, D. F. Cox, and K. M. Rosso. Thioarsenides: a case for long-range Lewis acid–base-directed van der Waals interactions. Phys. Chem. Miner., 2011, 38(4), 267-291. https://doi.org/10.1007/s00269-010-0402-3

    Article  CAS  Google Scholar 

  850. A. Kyono. Molecular conformation and anion configuration variations for As4S4 and As4Se4 in an anion-substituted solid solution. Am. Mineral., 2009, 94(4), 451-460. https://doi.org/10.2138/am.2009.3075

    Article  CAS  Google Scholar 

  851. G. O. Lepore, T. B. Ballaran, F. Nestola, L. Bindi, D. Pasqual, and P. Bonazzi. Compressibility of β-As4S4: An in situ high-pressure single-crystal X-ray study. Mineral. Mag., 2012, 76(4), 963-973. https://doi.org/10.1180/minmag.2012.076.4.12

    Article  CAS  Google Scholar 

  852. A. Kutoglu. Darstellung und Kristallstruktur einer neuen isomeren Form von As4S4. Z. Anorg. Allg. Chem., 1976, 419(2), 176-184. https://doi.org/10.1002/zaac.19764190211

    Article  CAS  Google Scholar 

  853. P. Bonazzi, S. Menchetti, and G. Pratesi. The crystal structure of pararealgar, As4S4. Am. Mineral., 1995, 80(3/4), 400-403. https://doi.org/10.2138/am-1995-3-422

    Article  CAS  Google Scholar 

  854. L. Bindi, V. Popova, and P. Bonazzi. Uzonite, As4S5, from the type locality: Single-crystal X-ray study and effects of exposure to light. Can. Mineral., 2003, 41(6), 1463-1468. https://doi.org/10.2113/gscanmin.41.6.1463

    Article  CAS  Google Scholar 

  855. L. Bindi and P. Bonazzi. Light-induced alteration of arsenic sulfides: A new product with an orthorhombic crystal structure. Am. Mineral., 2007, 92(4), 617-620. https://doi.org/10.2138/am.2007.2332

    Article  CAS  Google Scholar 

  856. G. Pratesi and M. Zoppi. An insight into the inverse transformation of realgar altered by light. Am. Mineral., 2015, 100(5/6), 1222-1229. https://doi.org/10.2138/am-2015-5045

    Article  Google Scholar 

  857. A. Gavezzotti, F. Demartin, C. Castellano, and I. Campostrini. Polymorphism of As4S3 (tris-(f06d2-sulfido)-tetra-arsenic): accurate structure refinement on natural α- and β-dimorphites and inferred room temperature thermodynamic properties. Phys. Chem. Miner., 2013, 40(2), 175-182. https://doi.org/10.1007/s00269-012-0559-z

    Article  CAS  Google Scholar 

  858. O. Carugo, O. A. Blatova, E. O. Medrish, V. A. Blatov, and D. M. Proserpio. Packing topology in crystals of proteins and small molecules: a comparison. Sci. Rep., 2017, 7(1), 13209. https://doi.org/10.1038/s41598-017-12699-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  859. J.-G. Eon. Vertex-connectivity in periodic graphs and underlying nets of crystal structures. Acta Crystallogr., Sect. A: Found. Adv., 2016, 72(3), 376-384. https://doi.org/10.1107/s2053273316003867

    Article  CAS  Google Scholar 

  860. S. V. Krivovichev. Structural complexity and configurational entropy of crystals. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 274-276. https://doi.org/10.1107/s205252061501906x

    Article  CAS  Google Scholar 

  861. N. B. Bolotina, V. V. Brazhkin, T. I. Dyuzheva, Y. Katayama, L. F. Kulikova, L. V. Lityagina, and N. A. Nikolaev. High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. JETP Lett., 2014, 98(9), 539-543. https://doi.org/10.1134/s0021364013220025

    Article  CAS  Google Scholar 

  862. W. L. Bragg and G. F. Claringbull. Crystal Structures of Minerals. London, UK: Bell, 1965.

  863. M. I. Chiragov and D. Yu. Pushcharovsky. Ca-khondrity: strukturnye modeli i polisomatizm (Ca-chondrites: structural models and polysomatism). Kristallografiya, 1990, 35, 718-721. [In Russian]

  864. G. J. Redhammer, G. Roth, and G. Amthauer. Ca3GeO4Cl2 with a norbergite-like structure. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, 63(8), i69-i72. https://doi.org/10.1107/s0108270107030478

    Article  CAS  PubMed  Google Scholar 

  865. Silikaty s odinochnymi i sdvoennymi kremnekislorodnymi tetraedrami (Silicates with Single and Double Silicon-Oxygen Tetrahedral) / Eds. E. M. Bonshtedt-Kupletskaya, N. N. Smol′yaninova, and F. V. Chukhrov: Mineraly (Minerals): Directory, Vol. 3, Iss. 1. Moscow, Russia: Nauka, 1972. [In Russian]

  866. W. A. Deer, R. A. Howie, and J. Zussman. Ortho- and Ring Silicates: Rock Forming Minerals, Vol. 1. London, UK: Longman, 1962.

  867. W. A. Deer, R. A. Howie, and J. Zussman. Orthosilicates: Rock-Forming Minerals, Vol. 1A. London, UK: The Geological Society, 1997.

  868. N. W. Jones. Crystallographic nomenclature and twinning in the humite minerals. Am. Mineral., 1969, 54(1/2), 309-313.

  869. W. H. Taylor and J. West. The crystal structure of the chondrodite series. Proc. R. Soc. London, Ser. A, 1928, 117(777), 517-532. https://doi.org/10.1098/rspa.1928.0014

    Article  Google Scholar 

  870. J. West and W. H. Taylor. XX. The structure of norbergite. Z. Kristallogr. - Cryst. Mater., 1929, 70(1-6), 461-474. https://doi.org/10.1524/zkri.1929.70.1.461

    Article  Google Scholar 

  871. I. D. Borneman-Starynkevich and V. S. Myasnikov. Izomorfnye zameshcheniya v klinogumite (Isomorphic substitutions in clinohumite). Dokl. Akad. Nauk SSSR, 1950, 71, 137. [In Russian]

  872. T. G. Sahama. Mineralogy of the humite group. Ann. Acad. Sci. Fenn., Ser. A3, 1953, 31, 1-50.

  873. Yu. K. Vorobyov. Nekotorye osobennosti izomorfizma i genezisa mineralov gruppy gumita (Some features of isomorphism and genesis of humite group minerals). Nov. Dannye Miner., 1996, 17, 26-37. [In Russian]

  874. R. L. Frost, S. J. Palmer, J. M. Bouzaid, and B. J. Reddy. A Raman spectroscopic study of humite minerals. JRaman Spectrosc., 2007, 38(1), 68-77. https://doi.org/10.1002/jrs.1601

    Article  CAS  Google Scholar 

  875. P. H. Ribbe, G. V. Gibbs, and N. W. Jones. Cation and anion substitutions in the humite minerals. Mineral. Mag. J. Mineral. Soc., 1968, 36(283), 966-975. https://doi.org/10.1180/minmag.1968.283.036.08

    Article  CAS  Google Scholar 

  876. G. V. Gibbs and P. H. Ribbe. The crystal structures of the humite minerals: I. Norbergite. Am. Mineral., 1969, 54, 376.

  877. G. V. Gibbs, P. H. Ribbe, and C. P. Anderson. The crystal structures of the humite minerals. II. Chondrodite. Am. Mineral., 1970, 55, 1182.

  878. N. W. Jones, P. H. Ribbe, and G. V. Gibbs. Crystal chemistry of the humite minerals. Am. Mineral., 1969, 54, 391.

  879. K. Robinson, G. V. Gibbs, and P. H. Ribbe. The crystal structures of the humite minerals. IV. Clinohumite and titanoclinohumite. Am. Mineral., 1973, 58, 43.

  880. V. Kocman and J. Rucklidge. The crystal structure of a titaniferous clinohumite. Can. Mineral., 1973, 12, 39.

  881. K. Fujino and Y. Takeuchi. Crystal chemistry of titanian chondrodite and titanian clinohumite of high-pressure origin. Am. Mineral., 1978, 63, 535.

  882. K. Langer, A. N. Platonov, S. Matsyuk, and M. Wildner. The crystal chemistry of the humite minerals: Fe2+–Ti4+ charge transfer and structural allocation of Ti4+ in chondrodite and clinohumite. Eur. J. Mineral., 2002, 14(6), 1027-1032. https://doi.org/10.1127/0935-1221/2002/0014-1027

    Article  CAS  Google Scholar 

  883. W. F. Müller and H.-R. Wenk. Mixed-layer characteristics in real humite structures. Acta Crystallogr., Sect. A, 1978, 34(4), 607-609. https://doi.org/10.1107/s0567739478001278

    Article  Google Scholar 

  884. T. J. White and B. G. Hyde. Electron microscope study of the humite minerals: I. Mg-rich specimens. Phys. Chem. Miner., 1982, 8(2), 55-63. https://doi.org/10.1007/bf00309014

    Article  CAS  Google Scholar 

  885. P. H. Ribbe. The humite series and Mn-analogs. In: Orthosilicates / Ed. R.G. Burns: Reviews in Mineralogy and Geochemistry, Vol. 5. De Gruyter, 1982, 231.

  886. T. J. White and B. G. Hyde. Electron microscope study of the humite minerals: II. Mn-rich specimens. Phys. Chem. Miner., 1982, 8(4), 167-174. https://doi.org/10.1007/bf00308239

    Article  CAS  Google Scholar 

  887. B. B. Shkurskii. Simmetriya i nekotorye svoistva gipoteticheskikh chlenov polisomaticheskoi serii gumita (Symmetry and some properties of hypothetical members of the polysomatic series of humite). In: New Ideas in Geosciences: Proc. of VI Int. Conf., Moscow, Russia, April 2003. Moscow, Russia: MGGA, 2003, 84-94. [In Russian]

  888. R. V. Galiulin and S. E. Cigarev. Ob ustoichivosti mineralov s goloedricheskimi fodorovskimi gruppami (On the stability of minerals with holohedral Fedorov groups). Dokl. Akad. Nauk SSSR, 1987, 293, 99/100. [In Russian]

  889. A. G. Shtukenberg and Yu. O. Punin. Opticheskie anomalii v kristallakh (Optical Anomalies in Crystals). Moscow, Russia: Nauka, 2004. [In Russian]

  890. I. A. Poroshina and M. I. Tatarintseva. Effekt opticheskoi smesimosti v produktakh tverdofaznykh reaktsii mineralov i neorganicheskikh soyedinenii (Effect of optical miscibility in products of solid-phase reactions of minerals and inorganic compounds). Zap. VMO, 1980, 109, 728-734. [In Russian]

  891. J. D. H. Donnay and G. Donnay. Propriétés optiques de la série bastnaesite-vaterite. Bull. Soc. Fr. Mineral. Cristallogr., 1961, 84(1), 25-29. https://doi.org/10.3406/bulmi.1961.5445

    Article  CAS  Google Scholar 

  892. M. Born and E. Wolf. Osnovy optiki (Fundamentals of Optics). Moscow, Russia: Nauka, 1973. [In Russian]

  893. B. B. Shkurskii. Kolichestvennaya model′toi struktury i politipov (Quantitative model of optical miscibility for polysomatic crystals of layered structure and polytypes). Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2005, 4, 37-42. [In Russian]

  894. Yu. O. Punin. Anomal′naya optika sloistykh geterogennykh kristallov (Anomalous optics of layered heterogeneous crystals). Zap. VMO, 1989, 118, 76-90. [In Russian]

  895. B. B. Shkurskii. Vozmozhnosti i ogranicheniya kontseptsii opticheskoi smesimosti (Possibilities and limitations of the optical miscibility concept). In: New Ideas in Geosciences: Proc. of VIII Int. Conf., Moscow, Russia, April 10-13, 2007. Moscow, Russia: RGGU, 2007, 327-330. [In Russian]

  896. B. B. Shkurskii. Opticheskaya smesimost′ v polisomaticheskoy serii gumita (Optical miscibility in polysomatic humite series). In: New Ideas in Geosciences: Proc. of VIII Int. Conf., Moscow, Russia, April 10-13, 2007. Moscow, Russia: RGGU, 2007, 331-334. [In Russian]

  897. A. N. Winchell and G. Winchell. The Microscopical Characters of Artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals. N.Y., London: Academic Press, 1964.

  898. M. Fleischer, R. E. Wilcox, and J. J. Matzko. Microscopic Determination of the Nonopaque Minerals. Washington, DC: US Government Printing Office, 1984.

  899. J. Hauser and H.-R. Wenk. Optical properties of composite crystals (submicroscopic domains, exsolution lamellae, solid solutions). Z. Kristallogr. - Cryst. Mater., 1976, 143(1-6), 188-219. https://doi.org/10.1524/zkri.1976.143.jg.188

    Article  CAS  Google Scholar 

  900. R. K. Rastsvetaeva and N. V. Chukanov. Crystal chemistry of labuntsovite-group minerals. Crystallogr. Rep., 2022, 67(4), 471-493. https://doi.org/10.1134/s1063774522040149

    Article  CAS  Google Scholar 

  901. N. V. Chukanov, M. F. Vigasina, R. K. Rastsvetaeva, S. M. Aksenov, J. A. Mikhailova, and I. V. Pekov. The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data. J. Raman Spectrosc., 2022, 53(6), 1188-1203. https://doi.org/10.1002/jrs.6343

    Article  CAS  Google Scholar 

  902. N. V. Chukanov, I. V. Pekov, and A. E. Zadov. Mineraly gruppy labuntsovita (Labuntsovite-Group Minerals). Moscow, Russia Nauka, 2003. [In Russian]

  903. N. V. Chukanov, A. I. Kazakov, V. V. Nedelko, S. A. Vozchikova, V. P. Tarasov, I. V. Pekov, D. Yu. Pushcharovsky, N. V. Zubkova, A. A. Grigorieva, and I. S. Lykova. Prirodnye geterokarkasnye silikaty - novyi vid syr′ya i prototipy mikroporistykh funktsional′nykh materialov: kristallokhimiya i kinetika ionoobmennykh protsessov (Natural heteroskeleton silicates as a new type of raw material and prototypes of microporous functional materials: crystal chemistry and kinetics of ion exchange processes). In: Fundamental′nye osnovy formirovaniya resursnoi bazy strategicheskogo syr′ya (Au, Ag, Pt, Cu, redkie elementy i metally) (Fundamental Foundations for the Formation of the Resource Base of Strategic Raw Materials (Au, Ag, Pt, Cu, rare elements and metals)). Moscow, Russia: GEOS, 2012, 293-335. [In Russian]

  904. E. H. Nickel and J. A. Mandarino. Procedures involving the I.M.A. Commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature. Mineral. Petrol., 1987, 37(2), 157-179. https://doi.org/10.1007/bf01164189

    Article  Google Scholar 

  905. S. Merlino, C. Biagioni, E. Bonaccorsi, N. V. Chukanov, I. V. Pekov, S. V. Krivovichev, V. N. Yakovenchuk, and T. Armbruster. ′Clinobarylite′–barylite: order-disorder relationships and nomenclature. Mineral. Mag., 2015, 79(1), 145-155. https://doi.org/10.1180/minmag.2015.079.1.12

    Article  Google Scholar 

  906. P. D. Robinson and J. H. Fang. Barylite, BaBe2Si2O7; its space group and crystal structure. Am. Mineral., 1977, 62, 167.

  907. R. K. Rastsvetaeva and N. V. Chukanov. Crystal structure and microtwinning of the new mineral clinobarylite BaBe2Si2O7. Dokl. Chem., 2003, 388, 2. https://doi.org/https://doi.org/10.1023/a:1022144601118

    Article  CAS  Google Scholar 

  908. N. V. Chukanov, I. V. Pekov, R. K. Rastsvetaeva, G. V. Shilov, and A. E. Zadov. Klinobarilit BaBe2Si2O7 - novyi mineral iz Khibinskogo massiva, Kol′skii poluostrov (Clinobarylite BaBe2Si2O7 - a new mineral from the Khibiny massif, Kola Peninsula). Zap VMO, 2003, 132, 29-37. [In Russian]

  909. A. J. Di Domizio, R. T. Downs, and H. Yang. Redetermination of clinobarylite, BaBe2Si2O7. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, 68(10), i78/i79. https://doi.org/10.1107/s1600536812040457

    Article  Google Scholar 

  910. S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, Y. Mikhailova, and Y. A. Pakhomovsky. Clinobarylite, BaBe2Si2O7: structure refinement, and revision of symmetry and physical properties. Neues Jahrb. Mineral., Monatsh., 2004, 2004(8), 373-384. https://doi.org/10.1127/0028-3649/2004/2004-0373

    Article  CAS  Google Scholar 

  911. N. Bourbaki. Elements of Mathematics: Algebra 1. Berlin, Heidelberg, Germany: Springer, 1989.

  912. L. Ya. Kulikov. Algebra i teoriya chisel (Algebra and Number Theory). Moscow, Russia: Nauka, 1979. [In Russian]

  913. S. Guggenheim, J. M. Adams, D. C. Bain, F. Bergaya, M. F. Brigatti, V. A. Drits, M. L. L. Formoso, E. Galán, T. Kogure, and H. Stanjek. Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l′Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Miner., 2006, 41(4), 863-877. https://doi.org/10.1180/0009855064140225

    Article  CAS  Google Scholar 

  914. T. Kader, P. Kautny, B. Stöger, and J. Fröhlich. OD- and non-OD-polytypism of 9-(3-chloropyridin-4-yl)-9H-carbazole. Z. Kristallogr. - Cryst. Mater., 2017, 232(5), 375-384. https://doi.org/10.1515/zkri-2016-2040

    Article  CAS  Google Scholar 

  915. B. Stöger, M. Weil, S. Murugesan, and K. Kirchner. Pseudo-symmetry analysis to unravel the secrets of twins - a case study with four diverse examples. Z. Kristallogr. - Cryst. Mater., 2016, 231(10), 601-622. https://doi.org/10.1515/zkri-2016-1950

    Article  CAS  Google Scholar 

  916. T. Kader, B. Stöger, J. Fröhlich, and P. Kautny. The phase transitions of 4-aminopyridine-based indolocarbazoles: Twinning, local- and pseudo-symmetry. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2019, 75(1), 97-106. https://doi.org/10.1107/s2052520618017341

    Article  CAS  Google Scholar 

  917. B. Bichler, C. Holzhacker, M. Glatz, B. Stöger, and K. Kirchner. Twinning of three Fe-PNP pincer complexes interpreted according to order–disorder (OD) theory. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2015, 71(5), 524-534. https://doi.org/10.1107/s2052520615015097

    Article  CAS  Google Scholar 

  918. A. M. Banaru, D. A. Banaru, and S. M. Aksenov. Bearing contacts in the crystal structure of 2-(tert-butyl)-4-chloro-6-phenyl-1,3,5-triazine. Moscow Univ. Chem. Bull., 2022, 77(3), 125-136. https://doi.org/10.3103/s0027131422030038

    Article  Google Scholar 

  919. I. D. Brown and R. D. Shannon. Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr., Sect. A, 1973, 29(3), 266-282. https://doi.org/10.1107/s0567739473000689

    Article  CAS  Google Scholar 

  920. L. A. Shuvalov, A. A. Urusovskaya, I. S. Zheludev, and A. V. Zalesskii. Fizicheskie svoistva kristallov (Physical Properties of Crystals): Sovremennaya kristallografiya (Modern Crystallography), Vol. 4. Moscow, Russia: Nauka, 1981. [In Russian]

Download references

Funding

The work was supported by Russian Science Foundation grant No. 20-77-10065.

Author information

Authors and Affiliations

Authors

Contributions

S. M. Aksenov. Doctor of Chemical Sciences, Head of the Laboratory of Arctic Mineralogy and Materials Science, Kola Science Center, Russian Academy of Sciences; senior researcher of the Laboratory for the Complex Analysis of Unique Ore-Bearing Systems, Geological Institute, Kola Science Center, Russian Academy of Sciences.

Area of scientific interests: crystal chemistry, single crystal X-ray diffraction analysis, modularity of crystal structures, mineralogy, topological analysis, polytypism, symmetry OD analysis.

E-mail: aks.crys@gmail.com

D. O. Charkin. Doctor of Chemical Sciences, associate professor of the Chair of Inorganic Chemistry, Department of Chemistry, Moscow State University; leading researcher of the Laboratory of Arctic Mineralogy and Materials Science, Kola Science Center, Russian Academy of Sciences. The author of section 3.5.

Area of scientific interests: inorganic chemistry, synthesis of new compounds, crystal chemistry of heavy elements, modular design of inorganic materials.

E-mail: d.o.charkin@gmail.com

A. M. Banaru. Candidate of Chemical Sciences, associate professor of the Chair of Physical Chemistry, Department of Chemistry, Moscow State University; leading researcher of the Laboratory of Arctic Mineralogy and Materials Science, Kola Science Center, Russian Academy of Sciences.

Area of scientific interests: mathematical crystallography, crystal chemistry of molecular crystals, topological analysis, theory of complexity of crystal structures.

E-mail: banaru@mail.ru

D. A. Banaru. Junior researcher, Vernadsky Institute of Geochemistry and Analytical Chemistry.

Area of scientific interests: molecular crystals, theory of complexity of crystal structures.

E-mail: banaru@geokhi.ru

C. N. Volkov. Candidate of Chemical Sciences, leading researcher of the Laboratory of Arctic Mineralogy and Materials Science, Kola Science Center, Russian Academy of Sciences.

Area of scientific interests: crystal chemistry of borates, inorganic materials science, single crystal X-ray diffraction analysis, aperiodic structures.

E-mail: s.n.volkov@inbox.ru

D. V. Deineko. Candidate of Chemical Sciences, associate professor of the Department of Chemistry, Moscow State University; leading researcher of the Laboratory of Arctic Mineralogy and Materials Science, Kola Science Center, Russian Academy of Sciences.

Area of scientific interests: inorganic materials science, optical properties of crystals, nanostructured materials, luminescence, bioceramics.

E-mail: deynekomsu@gmail.com

A. N. Kuznetsov. Corresponding Member of the Russian Academy of Sciences, Doctor of Chemical Sciences, leading researcher of the Chair of Inorganic Chemistry, Department of Chemistry, Moscow State University. The author of Section 3.5.

Area of scientific interests: inorganic chemistry, intermetallic compounds, DFT calculations, promising materials.

R. K. Rastsvetaeva. Doctor of Geological-Mineralogical Sciences, chief researcher of the Laboratory of X-Ray Methods of Analysis and Synchrotron Radiation, Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences.

Area of scientific interests: general mineralogy and mineralogical crystallography, crystal chemistry of silicates, systematization of inorganic compounds, structural chemistry, single crystal X-ray diffraction analysis.

E-mail: rast.cryst@gmail.com

N. V. Chukanov. Doctor of Physical-Mathematical Sciences, chief researcher of the Laboratory of Kinetic Calorimetry, Federal Research Center of Physical and Medical Chemistry, Russian Academy of Sciences.

Area of scientific interests: infrared spectroscopy, general mineralogy, physics of minerals, crystal chemistry, systematization of natural compounds, energy-intensive compounds.

E-mail: nikchukanov@yandex.ru

B. B. Shkurskii. Candidate of Geological-Mineralogical Sciences, associate professor of the Chair of Petrology and Volcanology, Department of Geology, Moscow State University. The author of Sections 7.1-7.3.

Area of scientific interests: optical mineralogy, geometric crystallography, optical properties of crystals, general mineralogy, petrography.

E-mail: shkurskyBB@yandex.ru

N. A. Yamnova. Doctor of Geological-Mineralogical Sciences, senior researcher of the Chair of Crystallography and Crystal Chemistry, Department of Geology, Moscow State University.

Area of scientific interests: general crystal chemistry, polytypism, modular and polysomatic series, genetic mineralogy, single crystal X-ray diffraction analysis.

Corresponding author

Correspondence to S. M. Aksenov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 10, 117102.https://doi.org/10.26902/JSC_id117102

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, S.M., Charkin, D.O., Banaru, A.M. et al. Modularity, poly­typism, topology, and complexity of crystal structures of inorganic compounds (Review). J Struct Chem 64, 1797–2028 (2023). https://doi.org/10.1134/S0022476623100013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623100013

Keywords

Navigation