Skip to main content
Log in

Compressibility of Sodium Amide and the Effect of Pressure on its Electronic Properties

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The effect of pressure on the structure and electronic properties of the α-phase of sodium amide is studied by ab initio calculations based on the density functional theory. Linear compressibilities of α-NaNH2 are calculated, and thus, the negative linear compressibility (–12 TPa–1) is found due to an increase in the ∠(N–Na–N) angle with increasing pressure. Based on the quantum topological analysis of the electron density, interatomic interactions are investigated. Changes in α-NaNH2 band gaps under pressure are calculated using the hybrid functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen. Complex hydrides for hydrogen storage. Chem. Rev., 2007, 107(10), 4111-4132. https://doi.org/10.1021/cr0501846

    Article  CAS  PubMed  Google Scholar 

  2. Y. Huang, X. Haung, X. Wang, W. Zhang, D. Zhou, Q. Zhou, B. Liu, and T. Cui. Structural transitions in NaNH2 via recrystallization under high pressure. Chin. Phys. B, 2019, 28(9), 096402. https://doi.org/10.1088/1674-1056/ab37f8

    Article  CAS  Google Scholar 

  3. Z. T. Xiong, J. J. Hu, G. T. Wu, Y. F. Liu, and P. Chen. Large amount of hydrogen desorption and stepwise phase transition in the chemical reaction of NaNH2 and LiAlH4. Catal. Today, 2007, 120(3/4), 287-291. https://doi.org/10.1016/j.cattod.2006.09.006

    Article  CAS  Google Scholar 

  4. M. Nagib, H. Kistrup, and H. Jacobs. Neutronenbeugung am Natriumdeuteroamid, NaND2. Atomkernenergie, 1975, 26(2), 87-90.

  5. A. Liu and Y. Song. In situ high-pressure study of sodium amide by Raman and infrared spectroscopies. J. Phys. Chem. B, 2011, 115(1), 7-13. https://doi.org/10.1021/jp107285r

    Article  CAS  PubMed  Google Scholar 

  6. Y. Zhong, H.-Y. Zhou, C.-H. Hu, D.-H. Wang, and A. R. Oganov. Theoretical studies of high-pressure phases, electronic structure, and vibrational properties of NaNH2. J. Phys. Chem. C, 2012, 116(15), 8387-8393. https://doi.org/10.1021/jp300455j

    Article  CAS  Google Scholar 

  7. K. R. Babu and G. Vaitheeswaran. Density functional study of electronic structure, elastic and optical properties of MNH2 (M = Li, Na, K, Rb). J. Phys. Condens. Matter, 2014, 26(23), 235503. https://doi.org/10.1088/0953-8984/26/23/235503

    Article  CAS  Google Scholar 

  8. E. B. Kaizer, N. G. Kravchenko, and A. S. Poplavnoi. A first-principles calculation of electronic properties of LiNH2 and NaNH2. J. Struct. Chem., 2018, 59(6), 1251-1257. https://doi.org/10.1134/s002247661806001x

    Article  CAS  Google Scholar 

  9. E. B. Kaizer, N. G. Kravchenko, and A. S. Poplavnoi. Elastic properties of lithium and sodium amides. Russ. Phys. J., 2019, 61(9), 1695-1701. https://doi.org/10.1007/s11182-018-1589-x

    Article  CAS  Google Scholar 

  10. R. J. Hemley and N. W. Ashcroft. The revealing role of pressure in the condensed matter sciences. Phys. Today, 1998, 51(8), 26-32. https://doi.org/10.1063/1.882374

    Article  CAS  Google Scholar 

  11. H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 2018, 90(1), 015007. https://doi.org/10.1103/revmodphys.90.015007

    Article  CAS  Google Scholar 

  12. D. V. Korabel’nikov and Y. N. Zhuravlev. Positive and negative linear compressibility and electronic properties of energetic and porous hybrid crystals with nitrate anions. Phys. Chem. Chem. Phys., 2016, 18(48), 33126-33133. https://doi.org/10.1039/c6cp06902a

    Article  PubMed  Google Scholar 

  13. D. V. Korabel′nikov and Y. N. Zhuravlev. Compressibility anisotropy and electronic properties of oxyanionic hydrates. J. Phys. Chem. A, 2017, 121(34), 6481-6490. https://doi.org/10.1021/acs.jpca.7b04776

    Article  CAS  PubMed  Google Scholar 

  14. D. V. Korabel′nikov, I. A. Fedorov, and Y. N. Zhuravlev. Compressibility and electronic properties of metal cyanides. Phys. Solid State, 2021, 63(7), 1021-1027. https://doi.org/10.1134/s106378342107012x

    Article  CAS  Google Scholar 

  15. T. P. Shakhtshneider, E. V. Boldyreva, M. A. Vasilchenko, H. Ahsbahs, and H. Uchtmann. Anisotropy of crystal structure distortion in organic molecular crystals of drugs induced by hydrostatic compression. J. Struct. Chem., 1999, 40(6), 892-898. https://doi.org/10.1007/bf02700697

    Article  CAS  Google Scholar 

  16. E. V. Bartashevich, S. A. Sobalev, Y. V. Matveychuk, and V. G. Tsirelson. Simulation of the compressibility of isostructural halogen containing crystals on macro- and microlevels. J. Struct. Chem., 2021, 62(10), 1607-1620. https://doi.org/10.1134/s0022476621100164

    Article  CAS  Google Scholar 

  17. A. D. Becke. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys., 2014, 140(18), 18A301. https://doi.org/10.1063/1.4869598

    Article  PubMed  Google Scholar 

  18. D. V. Korabel′nikov and Y. N. Zhuravlev. Structure and electronic properties of MNO3 (M: Li, Na, K, NH4) under pressure: DFT-D study. J. Phys. Chem. Solids, 2015, 87, 38-47. https://doi.org/10.1016/j.jpcs.2015.08.002

    Article  CAS  Google Scholar 

  19. D. V. Korabel′nikov and Y. N. Zhuravlev. Effect of pressure on the structure and the electronic properties of LiClO4, NaClO4, KClO4, and NH4ClO4. Phys. Solid State, 2017, 59(2), 254-261. https://doi.org/10.1134/s1063783417020123

    Article  Google Scholar 

  20. I. A. Fedorov. Structure and electronic properties of perylene and coronene under pressure: First-principles calculations. Comput. Mater. Sci., 2017, 139, 252-259. https://doi.org/10.1016/j.commatsci.2017.08.004

    Article  CAS  Google Scholar 

  21. I. A. Fedorov and D. V. Korabelnikov. Ab initio study of the compressibility and electronic properties of crystalline purine. J. Struct. Chem., 2022, 63(10), 1670-1677. https://doi.org/10.1134/s0022476622100134

    Article  CAS  Google Scholar 

  22. D. V. Korabel’nikov and I. A. Fedorov. Ab initio study of the compressibility and electronic properties of a molecular organic crystal C8H10O2. Phys. Solid State, 2022, 64(10), 1488. https://doi.org/10.21883/pss.2022.10.54240.378

    Article  Google Scholar 

  23. R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De , P. D′Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman. CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem., 2014, 114(19), 1287-1317. https://doi.org/10.1002/qua.24658

    Article  CAS  Google Scholar 

  24. D. Vilela Oliveira, J. Laun, M. F. Peintinger, and T. Bredow. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem., 2019, 40(27), 2364-2376. https://doi.org/10.1002/jcc.26013

    Article  CAS  PubMed  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  26. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  27. C. G. Broyden. The convergence of a class of double-rank minimization algorithms. IMA J. Appl. Math., 1970, 6(3), 222-231. https://doi.org/10.1093/imamat/6.3.222

    Article  Google Scholar 

  28. H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12), 5188-5192. https://doi.org/10.1103/physrevb.13.5188

    Article  Google Scholar 

  29. W. F. Perger, J. Criswell, B. Civalleri, and R. Dovesi. Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput. Phys. Commun., 2009, 180(10), 1753-1759. https://doi.org/10.1016/j.cpc.2009.04.022

    Article  CAS  Google Scholar 

  30. R. Gaillac, P. Pullumbi, and F.-X. Coudert. ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter, 2016, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201

    Article  CAS  PubMed  Google Scholar 

  31. R. F. W. Bader. A quantum theory of molecular structure and its applications. Chem. Rev., 1991, 91(5), 893-928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  32. C. Gatti and S. Casassa. TOPOND14 User′s Manual. Milano, Italy: CNR-ISTM Milano, 2014.

  33. K. Fucke and J. W. Steed. X-ray and neutron diffraction in the study of organic crystalline hydrates. Water, 2010, 2(3), 333-350. https://doi.org/10.3390/w2030333

    Article  CAS  Google Scholar 

  34. F. Mouhat and F.-X. Coudert. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B, 2014, 90(22), 224104. https://doi.org/10.1103/physrevb.90.224104

    Article  Google Scholar 

  35. R. Hill. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A, 1952, 65(5), 349-354. https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  36. S. F. Pugh. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1954, 45(367), 823-843. https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  37. Š. Masys and V. Jonauskas. Elastic properties of rhombohedral, cubic, and monoclinic phases of LaNiO3 by first principles calculations. Comput. Mater. Sci., 2015, 108, 153-159. https://doi.org/10.1016/j.commatsci.2015.06.034

    Article  CAS  Google Scholar 

  38. C. Gatti. Chemical bonding in crystals: new directions. Z. Kristallogr. - Cryst. Mater., 2005, 220(5/6), 399-457. https://doi.org/10.1524/zkri.220.5.399.65073

    Article  CAS  Google Scholar 

  39. V. G. Tsirelson. Recent Advances in Quantum Theory of Atoms in Molecules. Weinheim: Wiley-VCH, 2007.

  40. E. A. Zhurova, A. I. Stash, V. G. Tsirelson, V. V. Zhurov, E. V. Bartashevich, V. A. Potemkin, and A. A. Pinkerton. Atoms-in-molecules study of intra- and intermolecular bonding in the pentaerythritol tetranitrate crystal. J. Am. Chem. Soc., 2006, 128(45), 14728-14734. https://doi.org/10.1021/ja0658620

    Article  CAS  PubMed  Google Scholar 

  41. D. V. Korabel′nikov and Y. N. Zhuravlev. The nature of the chemical bond in oxyanionic crystals based on QTAIM topological analysis of electron densities. RSC Adv., 2019, 9(21), 12020-12033. https://doi.org/10.1039/c9ra01403a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation and the Kemerovo region - Kuzbass (grant No. 22-22-20026), https://rscf.ru/project/22-22-20026/ (https://rscf.ru/en/project/22-22-20026/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Korabelnikov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114448.https://doi.org/10.26902/JSC_id114448

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korabelnikov, D.V., Fedorov, I.A., Kravchenko, N.G. et al. Compressibility of Sodium Amide and the Effect of Pressure on its Electronic Properties. J Struct Chem 64, 1461–1469 (2023). https://doi.org/10.1134/S0022476623080103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080103

Keywords

Navigation