Skip to main content
Log in

1,2,4-TRIAZOLATE CLUSTER COMPLEXES (Bu4N)2[Mo6X8(N3C2H2)6] (X = Br, I)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new luminescent cluster complexes (Bu4N)2[Mo6X8(N3C2H2)6n(H2O) (1) (X = Br, n = 4) and (2) (X = I, n = 5) are obtained by the reaction of (Bu4N)2[Mo6X8(OOCCH3)6] (X = Br, I) with 1-trimethylsilyl-1,2,4-triazole Me3Si–N3C2H2. Their crystal structures are determined and the luminescent properties of powder samples are studied. According to single crystal X-ray diffraction data, molybdenum atoms are monodentate coordinated by N1 atoms of triazolate ligands at Mo–N distances of 2.154(9)-2.185(9) Å (1) and 2.158(13)-2.21(13) Å (2). The complexes are characterized by electrospray mass spectrometry, proton magnetic resonance, elemental analysis, and IR spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. A. Mikhailov, K. A. Brylev, P. A. Abramov, E. Sakuda, S. Akagi, A. Ito, N. Kitamura, and M. N. Sokolov. Inorg. Chem., 2016, 55, 8437-8445. https://doi.org/10.1021/acs.inorgchem.6b01042

    Article  Google Scholar 

  2. S. Fujii, E. Tanioka, K. Sasaki, T. Horiguchi, S. Akagi, and N. Kitamura. Eur. J. Inorg. Chem., 2020, 2983-2989. https://doi.org/10.1002/ejic.202000440

    Article  Google Scholar 

  3. S. Akagi, S. Fujii, T. Horiguchi, and N. Kitamura. J. Cluster Sci., 2017, 28, 757-772. https://doi.org/10.1007/s10876-016-1110-z

    Article  Google Scholar 

  4. M. A. Mikhailov, A. S. Berezin, T. S. Sukhikh, D. G. Sheven, A. L. Gushchin, and M. N. Sokolov. J. Struct. Chem., 2021, 62(12), 1896-1906. https://doi.org/10.1134/s002247662112009x

    Article  Google Scholar 

  5. M. A. Mikhailov, K. A. Brylev, A. V. Virovets, M. R. Gallyamov, I. Novozhilov, and M. N. Sokolov. New J. Chem., 2016, 40, 1162-1168. https://doi.org/10.1039/C5NJ02246K

    Article  Google Scholar 

  6. A. D. Mironova, M. A. Mikhajlov, , , , , , E. I. Goryunov, V. K. Brel, and M. N. Sokolov. Z. Anorg. Allg. Chem., 2019, 645, 1135-1140. https://doi.org/10.1002/zaac.201900148

    Article  Google Scholar 

  7. M. N. Sokolov, M. A. Mihailov, A. V. Virovets, K. A. Brylev, R. A. Bredihin, A. M. Maksimov, V. E. Platonov, and V. P. Fedin. Russ. Chem. Bull., 2013, 8, 1764-1767. https://doi.org/10.1007/s11172-013-0253-4

    Article  Google Scholar 

  8. A. D. Mironova, M. A. Mikhaylov, A. M. Maksimov, K. A. Brylev, A. L. Gushchin, D. V. Stass, A. S. Novikov, I. V. Eltsov, P. A. Abramov, and M. N. Sokolov. Eur. J. Inorg. Chem., 2022, 2022(7), e202100890. https://doi.org/10.1002/ejic.202100890

    Article  Google Scholar 

  9. M. N. Sokolov, M. A. Mikhailov, K. A. Brylev, A. V. Virovets, C. Vicent, N. B. Kompankov, and V. P. Fedin. Inorg. Chem. 2013, 52, 12477-12481. https://doi.org/10.1021/ic401377g

    Article  Google Scholar 

  10. Y. A. Vorotnikov, O. A. Efremova, I. N. Novozhilov, V. V. Yanshole, N. V. Kuratieva, K. A. Brylev, N. Kitamura, Y. V. Mironov, and M. A. Shestopalov. J. Mol. Struct., 2017, 1134, 237-243. https://doi.org/10.1016/j.molstruc.2016.12.052

    Article  Google Scholar 

  11. A. D. Mironova, M. A. Mikhailov, , , T. S. Sukhikh, and M. N. Sokolov. New J. Chem., 2020, 44, 20620-20625. https://doi.org/10.1039/D0NJ04259E

    Article  Google Scholar 

  12. K. Kirakci, P. Kubat, M. Kucerakova, V. Sicha, H. Gbelcova, P. Lovecka, P. Grznarova, T. Ruml, and K. Lang. Inorg. Chim. Acta, 2016, 441, 42. https://doi.org/10.1016/j.ica.2015.10.043

    Article  Google Scholar 

  13. A. Mironova, A. Gushchin, P. Abramov, I. Eltsov, A. Ryadun, and M. Sokolov. Polyhedron, 2021, 205, 115282. https://doi.org/10.1016/j.poly.2021.115282

    Article  Google Scholar 

  14. J. A. Jackson, C. Turro, M. D. Newsham, and D. G. Nocera. J. Phys. Chem., 1990, 94, 4500-4507. https://doi.org/10.1021/j100374a029

    Article  Google Scholar 

  15. J. G. Elistratova, M. A. Mikhaylov, T. S. Sukhikh, K. V. Kholin, I. R. Nizameev, A. R. Khazieva, A. T. Gubaidullin, A. D. Voloshina, G. V. Sibgatullina, D. V. Samigullin, K. A. Petrov, M. N. Sokolov, and A. R. Mustafina. J. Mol. Liq., 2021, 343, 117601. https://doi.org/10.1016/j.molliq.2021.117601

    Article  Google Scholar 

  16. C. de , R. Gavara, A. García-Fernández, M. Mikhaylov, M. N. Sokolov, J. F. Miravet, F. Sancenón, R. Martínez-Máñez, and F. Galindo. Biomater. Adv., 2022, 140, 213057. https://doi.org/10.1016/j.bioadv.2022.213057

    Article  Google Scholar 

  17. A. Beltran, M. Mikhailov, M. N. Sokolov, V. Perez-Laguna, A. Rezusta, M. J. Revillod, and F. Galindo. J. Mater. Chem. B, 2016, 4, 5975-5979. https://doi.org/10.1039/C6TB01966H

    Article  Google Scholar 

  18. C. Arnau del Valle, C. Felip-León, C. A. Angulo-Pachón, M. Mikhailov, M. N. Sokolov, J. F. Miravet, and F. Galindo. Inorg. Chem., 2019, 58, 8900-8905. https://doi.org/10.1021/acs.inorgchem.9b00916

    Article  Google Scholar 

  19. M. Puche, R. Garcia-Aboal, M. A. Mikhaylov, M. N. Sokolov, P. Atienzar, and M. Feliz. Nanomaterials, 2020, 10, 1259. https://doi.org/10.3390/nano10071259

    Article  Google Scholar 

  20. Y. Liang, M. N. Sokolov, M. A. Mikhaylov, H. Ibrahim, M. Goldmann, S. Choua, N. Le Breton, C. Boudon, V. Badets, A. Bonnefont, and L. Ruhlmann. Electrochim. Acta, 2021, 388, 138493. https://doi.org/10.1016/j.electacta.2021.138493

    Article  Google Scholar 

  21. J. Choi, D. Nguyen, E. Gi, K. A. Brylev, J. W. Yu, D. Kim, W. B. Lee, D. H. Kim, I. Chung, K. K. Kim, and S.-J. Kim. J. Mater. Chem. C, 2022, 10(11), 4402-4410. https://doi.org/10.1039/d1tc05396e

    Article  Google Scholar 

  22. M. A. Mikhaylov, P. A. Abramov, V. Yu. Komarov, and M. N. Sokolov. Polyhedron, 2017, 122, 241-246. https://doi.org/10.1016/j.poly.2016.11.011

    Article  Google Scholar 

  23. A. A. Ivanov, M. Haouas, D. V. Evtushok, T. N. Pozmogova, T. S. Golubeva, Y. Molard, S. Cordier, C. Falaise, E. Cadot, and M. A. Shestopalov. Inorg. Chem., 2022, 61, 14462-14469. https://doi.org/10.1021/acs.inorgchem.2c02468

    Article  Google Scholar 

  24. T. N. Pozmogova, N. A. Sitnikova, E. V. Pronina, S. M. Miroshnichenko, A. O. Kushnarenko, A. O. Solovieva, S. S. Bogachev, G. D. Vavilov, O. A. Efremova, Y. A. Vorotnikov, and M. A. Shestopalov. Mater. Chem. Front., 2021, 5, 7499-7507. https://doi.org/10.1039/D1QM00956G

    Article  Google Scholar 

  25. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  26. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  27. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  Google Scholar 

  28. D. Bublitz, W. Preetz, and M. K. Simsek. Z. Anorg. Allg. Chem., 1997, 623, 1. https://doi.org/10.1002/zaac.19976230102

    Article  Google Scholar 

  29. M. K. Simsek, D. Bublitz, and W. Preetz. Z. Anorg. Allg. Chem., 1997, 623, 1885. https://doi.org/10.1002/zaac.19976231211

    Article  Google Scholar 

  30. M. Hohling, M. K. Simsek, and W. Preetz. Z. Anorg. Allg. Chem., 1998, 624, 1171. https://doi.org/10.1002/(SICI)1521-3749(199807)624:7%3C1171::AID-ZAAC1171%3E3.0.CO;2-2

    Article  Google Scholar 

  31. V. A. Khutornoi, N. G. Naumov, Yu. V. Mironov, O. Oeckler, A. Simon, and V. E. Fedorov. Russ. J. Coord. Chem., 2002, 28, 183. https://doi.org/10.1023/A:1014724002211

    Article  Google Scholar 

  32. M. Kepenekian, Y. Molard, K. Costuas, P. Lemoine, R. Gautier, S. A. Girard, B. Fabre, P. Turban, and S. Cordier. Mater. Horiz., 2019, 6, 1828. https://doi.org/10.1039/C9MH00724E

    Article  Google Scholar 

  33. M. K. Simsek and W. Preetz. Z. Anorg. Allg. Chem., 1997, 623, 515. https://doi.org/10.1002/zaac.19976230181

    Article  Google Scholar 

  34. R. E. Marsh. Acta Crystallogr., Sect. B: Struct. Sci., 2005, 61, 359. https://doi.org/10.1107/S0108768105009651

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700313-8 for the study of the luminescent properties of new cluster complexes 1 and 2, determination of the chemical compositions and structures of 1 and 2) and RFBR (grant No. 20-03-00410 for the synthesis of 1 and 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mikhaylov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 103869.https://doi.org/10.26902/JSC_id103869

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, M.A., Berezin, A.S., Sukhikh, T.S. et al. 1,2,4-TRIAZOLATE CLUSTER COMPLEXES (Bu4N)2[Mo6X8(N3C2H2)6] (X = Br, I). J Struct Chem 63, 2101–2112 (2022). https://doi.org/10.1134/S0022476622120216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622120216

Keywords

Navigation