Skip to main content
Log in

CRYSTAL STRUCTURE OF 6-tert-BUTYL-3-DICYANOMETHYLENE-, 3-CYANOMETHYL-, AND 3-CARBALKOXY-1,2,4-TRIAZINES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structures of (E)-2-(6-tert-butyl-5-oxo-4,5-dihydro-1,2,4-triazine-3(2H)-ylidene)-3-oxo-3-phenylpropionitrile 2a, 2-(6-tert-butyl-(5-oxo- and 4,5-dihydro-)1,2,4-triazine-3(2H)-ylidene)malononitriles 2b, 9 and 10, and a series of tert-butyl-2-(6-tert-butyl-(3-cyanomethyl, carbethoxy-, and carbisobutoxy)-5-oxo-1,2,4-triazine-2(5H)-yl)acetates 8a, 11a,b are studied for the first time by single-crystal XRD. The synthesis pathway of the 8a heterocycle is studied using deuterium labeling. Tautomerism, bond lengths, and isomeric packing of 3-cyanomethyl- and 3-cyanomethylene-1,2,4-triazines in crystals are discussed. Non-covalent interactions are considered using the Hirshfeld surface analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Scheme 7
Fig. 3
Fig. 4
Fig. 5
Scheme 8

Similar content being viewed by others

REFERENCES

  1. K. C. Majumdar and S. K. Chattopadhyay. Heterocycles in Natural Product Synthesis. Weinheim: Wiley-VCH, 2011. https://doi.org/10.1002/9783527634880

    Book  Google Scholar 

  2. T. Cao, M. L. Martini, K. S. Park, H. Ü. Kaniskan, and J. Jin. Pyrimidines and Their Benzo Derivatives. In: Comprehensive Heterocyclic Chemistry IV / Eds. D. S. Black, J. Cossy, and C. V. Stevens. Oxford: Elsevier, 2022, Vol. 8, 86-228. https://doi.org/10.1016/B978-0-12-818655-8.00041-X

    Chapter  Google Scholar 

  3. V. Sharma, N. Chitranshi, and A. K. Agarwal. Int. J. Med. Chem., 2014, 2014, 202784. https://doi.org/10.1155/2014/202784

    Article  Google Scholar 

  4. S. X. Lin, M. A. Curtis, and J. Sperry. Bioorg. Med. Chem., 2020, 28, 115820. https://doi.org/10.1016/j.bmc.2020.115820

    Article  Google Scholar 

  5. S. Badrinarayanan and J. Sperry. Org. Biomol. Chem., 2012, 10, 2126-2132. https://doi.org/10.1039/C2OB06935K

    Article  Google Scholar 

  6. R. M. Ghalib, S. H. Mehdi, A. M. Malla, M. G. Alam, R. Hashim, S. B. Novaković, F. Kawamura, and H. A. H. Alzahrani. Crystallogr. Rep., 2021, 66, 1279-1285. https://doi.org/10.1134/S1063774521070051

    Article  Google Scholar 

  7. B. Debnatha, W. S. Singh, M. Das, S. Goswami, M. K. Singh, D. Maiti, and K Manna. Mater. Today Chem., 2018, 9, 56-72. https://doi.org/10.1016/j.mtchem.2018.05.001

    Article  Google Scholar 

  8. Q.-U. Ain, H. Khan, M. S. Mubarak, and A. Pervaiz. Front. Pharmacol., 2016, 7, 292. https://doi.org/10.3389/fphar.2016.00292

    Article  Google Scholar 

  9. Z.-X. He, Y.-P. Gong, X. Zhang, L.-Y. Ma, and W. Zhao. Eur. J. Med. Chem., 2021, 209, 112946. https://doi.org/10.1016/j.ejmech.2020.112946

    Article  Google Scholar 

  10. P. G. Sergeev and V. G. Nenajdenko. Russ. Chem. Rev., 2020, 89, 393-429. https://doi.org/10.1070/RCR4922

    Article  Google Scholar 

  11. S. M. Ivanov. 1,2,4-Triazines and Their Benzo Derivatives. In: Comprehensive Heterocyclic Chemistry IV / Eds. D. S. Black, J. Cossy, C. V. Stevens, and S. J. Gharpure. Oxford: Elsevier, 2022, Vol. 9, 29-180. https://doi.org/10.1016/B978-0-12-818655-8.00062-7

    Chapter  Google Scholar 

  12. E. K. Voinkov, R. A. Drokin, V. V. Fedotov, I. I. Butorin, K. V. Savateev, D. N. Lyapustin, D. A. Gazizov, E. B. Gorbunov, P. A. Slepukhin, N. A. Gerasimova, N. P. Evstigneeva, N. V. Zilberberg, N. V. Kungurov, E. N. Ulomsky, and V. L. Rusinov. ChemistrySelect, 2022, 7, e202104253. https://doi.org/10.1002/slct.202104253

    Article  Google Scholar 

  13. R. R. Knapp, V. Tona, T. Okada, R. Sarpong, and N. K. Garg. Org. Lett., 2020, 22, 8430-8435. https://doi.org/10.1021/acs.orglett.0c03052

    Article  Google Scholar 

  14. W. Shi, H. Qiang, D. Huang, X. Bi, W. Huang, and H. Qian. Eur. J. Med. Chem., 2018, 158, 814-831. https://doi.org/10.1016/j.ejmech.2018.09.050

    Article  Google Scholar 

  15. I. Guryanov, S. Fiorucci, and T. Tennikova. Mater. Sci. Eng., C, 2016, 68, 890-903. https://doi.org/10.1016/j.msec.2016.07.072

    Article  Google Scholar 

  16. P. Dao, D. Lietha, M. Etheve-Quelquejeu, C. Garbay, and H. Chen. Bioorg. Med. Chem. Lett., 2017, 27(8), 1727-1730. https://doi.org/10.1016/j.bmcl.2017.02.072

    Article  Google Scholar 

  17. A. Kumar, U. K. Singh, P. Gupta, F. Muzaffar, P. Pathak, and P. K. Tomar. Pharma Chem., 2016, 8(10), 259-273.

  18. D. R. Sherin, C. K. Geethu, J. Prabhakaran, J. J. Mann, J. S. D. Kumar, and T. K. Manojkumar. Comput. Biol. Chem., 2019, 78, 108-115. https://doi.org/10.1016/j.compbiolchem.2018.11.015

    Article  Google Scholar 

  19. S. Roy, A. Yadaw, S. Roy, G. Sirasani, A. Gangu, J. D. Brown, J. D. Armstrong III, R. W. Stringham, B. F. Gupton, C. H. Senanayake, and D. R. Snead. Org. Process Res. Dev., 2022, 26(1), 82-90. https://doi.org/10.1021/acs.oprd.1c00071

    Article  Google Scholar 

  20. S. M. Ivanov and A. M. Shestopalov. J. Heterocycl. Chem., 2019, 56(8), 2210-2220. https://doi.org/10.1002/jhet.3615

    Article  Google Scholar 

  21. S. M. Ivanov. Phosphorus, Sulfur Silicon Relat. Elem., 2021, 196(10), 911-919. https://doi.org/10.1080/10426507.2021.1939347

    Article  Google Scholar 

  22. S. M. Ivanov, L. M. Mironovich, and E. D. Daeva. Russ. Chem. Bull., 2021, 70(7), 1394-1399. https://doi.org/10.1007/s11172-021-3229-9

    Article  Google Scholar 

  23. S. M. Ivanov. Tetrahedron Lett., 2020, 61(42), 152404. https://doi.org/10.1016/j.tetlet.2020.152404

    Article  Google Scholar 

  24. S. M. Ivanov and D. S. Koltun. Tetrahedron Lett., 2022, 107, 154097. https://doi.org/10.1016/j.tetlet.2022.154097

    Article  Google Scholar 

  25. APEX-III. Madison, Wisconsin, USA: Bruker AXS Inc., 2018.

  26. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. J. Appl. Crystallogr., 2015, 48, 3. https://doi.org/10.1107/S1600576714022985

    Article  Google Scholar 

  27. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  28. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  29. M. A. Spackman and J. J. McKinnon. CrystEngComm, 2002, 4(66), 378-392. https://doi.org/10.1039/B203191B

    Article  Google Scholar 

  30. M. A. Spackman, J. J. McKinnon, and D. Jayatilaka. CrystEngComm, 2008, 10(4), 377-388. https://doi.org/10.1039/b715227b

    Article  Google Scholar 

  31. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. J. Appl. Crystallogr., 2021, 54, 1006-1011. https://doi.org/10.1107/S1600576721002910

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 102825.https://doi.org/10.26902/JSC_id102825

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.M., Koltun, D.S. CRYSTAL STRUCTURE OF 6-tert-BUTYL-3-DICYANOMETHYLENE-, 3-CYANOMETHYL-, AND 3-CARBALKOXY-1,2,4-TRIAZINES. J Struct Chem 63, 1949–1962 (2022). https://doi.org/10.1134/S002247662212006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662212006X

Keywords

Navigation