Skip to main content
Log in

SAMAROCENECHALCOGENIDES \(\mathbf{[\{Cp}_{\mathbf{2}}^{\mathbf{*}}\mathbf{Sm(THF)}{{\mathbf{\}}}_{\mathbf{2}}}\mathbf{(\mu }\text{-}Q\mathbf{)]}\) (Q = S, SE, TE) AS SYNTHETIC EQUIVALENTS OF THE Q2– SYNTHON IN REACTIONS WITH CS2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Reactions of decamethylsamarocene monochalcogenides \([{{\{\text{Cp}_{2}^{\mathbf{*}}\text{Sm}(\text{THF})\}}_{\text{2}}}(\mu \text{-}Q)]\) (Cp* = η5-C5(CH3)5; Q = S (1), Se (2), Te (3)) with carbon disulfide are studied. It is established that these reactions lead to the formation of complexes \([{{(\text{Cp}_{2}^{\mathbf{*}}\text{Sm})}_{\text{2}}}(\mu \text{-C}{{\text{S}}_{\text{2}}}Q)]\) (Q = S (4), Se (5), Te (6)), i.e. they can be interpreted as an interaction of Q2– with CS2 in the samarium coordination sphere. The structure of compounds 4-6 was determined by XRD (CCDC CIF files No. 2170732 (4), 2170734 (5), 2170733 (6)). The \(\text{CS}_3^{2-}\) bridging ligand in 4 is coordinated to Sm(III) ions by the μ–κ2(S,S′):κ2(S″,S′) type. The heterochalcogenide complexes 5 and 6 are a mixture of isomers with μ–κ2(S,Q):κ2(S′,Q) (main isomer) and μ–κ2(Q,S):κ2(S′,S) types of CS2Q2– coordination (Q = Se, Te).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. C. Chatgilialoglu, D. Crich, M. Komatsu, and I. Ryu. Chem. Rev., 1999, 99, 1991. https://doi.org/10.1021/cr9601425

    Article  CAS  Google Scholar 

  2. M. Pasquali, C. Floriani, A. C. Villa, and C. Guastini. Inorg. Chem., 1980, 19, 3847. https://doi.org/10.1021/ic50214a054

    Article  CAS  Google Scholar 

  3. N. S. Nametkin, B. I. Kolobkov, V. D. Tyurin A. N. Muratov, A. I. Nekhaev, M. Mavlonov, and A. Ya. Sideridu. J. Organomet. Chem., 1984, 276, 393. https://doi.org/10.1016/0022-328X(84)80661-0

    Article  CAS  Google Scholar 

  4. C. Yao, P. Chakraborty, E. Aresu, H. Li, C. Guan, C. Zhou, L.-C. Liang, and K.-W. Huang. Dalton Trans., 2018, 47(45), 16057-16065. https://doi.org/10.1039/c8dt03403f

    Article  CAS  Google Scholar 

  5. C.-H. Chen, Y.-S. Chang, C.-Y. Yang, T.-N. Chen, C.-M. Lee, and W.-F. Liaw. Dalton Trans., 2004, 137. https://doi.org/10.1039/b311059a

    Article  Google Scholar 

  6. C. Schneider, S. Demeshko, F. Meyer, and C. G. Werncke. Chem. – Eur. J., 2021, 27, 6348. https://doi.org/10.1002/chem.202100336

    Article  CAS  Google Scholar 

  7. N. J. Hartmann, G. Wu, and T. W. Hayton. Dalton Trans., 2016, 45, 14508. https://doi.org/10.1039/c6dt00885b

    Article  CAS  Google Scholar 

  8. U. Kaur, K. Saha, S. Bairagi, A. Das, T. Roisnel, T. K. Paine, and S. Ghosh. J. Organomet. Chem., 2021, 949, 121943. https://doi.org/10.1016/j.jorganchem.2021.121943

    Article  CAS  Google Scholar 

  9. S. Bagherzadeh and N. P. Mankad. Chem. Commun., 2018, 54, 1097. https://doi.org/10.1039/c7cc09067f

    Article  CAS  Google Scholar 

  10. R. D. Adams, B. Captain, O.-S. Kwon, and S. Miao. Inorg. Chem., 2003, 42, 3356. https://doi.org/10.1021/ic030034i

    Article  CAS  Google Scholar 

  11. H. Brunner, N. Janietz, J. Wachter, T. Zahn, and M. L. Ziegler. Angew. Chem., Int. Ed., 1985, 24, 133. https://doi.org/10.1002/anie.198501331

    Article  Google Scholar 

  12. W. S. Farrell, P. Y. Zavalij, and L. R. Sita. Angew. Chem., Int. Ed., 2015, 54, 4269. https://doi.org/10.1002/anie.201410353

    Article  CAS  Google Scholar 

  13. R. Ramalakshmi, T. Roisnel, V. Dorcet, J.-F. Halet, and S. Ghosh. J. Organomet. Chem., 2017, 849/850, 256. http://dx.doi.org/10.1016/j.jorganchem.2017.03.027

    Article  CAS  Google Scholar 

  14. C. E. Rao, S. K. Barik, K. Yuvaraj, K. Bakthavachalam, T. Roisnel, V. Dorcet, J.-F. Halet, and S. Ghosh. Eur. J. Inorg. Chem., 2016, 4913. http://dx.doi.org/10.1002/ejic.201600823

    Article  CAS  Google Scholar 

  15. R. Rossi, A. Marchi, and L. Magon. J. Chem. Soc., Dalton Trans., 1990, 2923. https://doi.org/10.1039/DT9900002923

    Article  Google Scholar 

  16. R. Dessapt, C. Simonnet-Jegat, S. Riedel, J. Marrot, and F. Secheresse. Transition Met. Chem., 2002, 27, 234. https://doi.org/10.1023/A:1013916126612

    Article  CAS  Google Scholar 

  17. K.-H. Yih, G.-H. Lee, and Y. Wang. Dalton Trans., 2003, 2810. https://doi.org/10.1039/B305374A

    Article  Google Scholar 

  18. F. K. Keter, I. A. Guzei, and J. Darkwa. Inorg. Chem. Commun., 2013, 27, 60. https://doi.org/10.1016/j.inoche.2012.10.003

    Article  CAS  Google Scholar 

  19. S. A. Aucott, A. M. Z. Slawin, and J. D. Woollins. Polyhedron, 2000, 19, 499. https://doi.org/10.1016/S0277-5387(00)00295-3

    Article  CAS  Google Scholar 

  20. E. P. L. Tay, S. L. Kuan, W. K. Leong, and L. Y. Goh. Inorg. Chem., 2007, 46(4), 1440-1450. https://doi.org/10.1021/ic061781t

    Article  CAS  Google Scholar 

  21. J. Vicente, M.-T. Chicote, P. Gonzalez-Herrero, and P. G. Jones. Inorg. Chem., 1997, 36, 5735. https://doi.org/10.1021/ic970478c

    Article  CAS  Google Scholar 

  22. R. Lalrempuia, A. Stasch, and C. Jones. Chem. Sci., 2013, 4, 4383. https://doi.org/10.1039/c3sc52242c

    Article  CAS  Google Scholar 

  23. C. Chen, C. G. Daniliuc, C. Muck-Lichtenfeld, G. Kehr, and G. Erker. J. Am. Chem. Soc., 2020, 142, 19763. https://doi.org/10.1021/jacs.0c10078

    Article  CAS  Google Scholar 

  24. L. Dostal, R. Jambor, A. Ruzicka, R. Jirasko, E. Cernoskova, L. Benes, and F. de Proft. Organometallics, 2010, 29, 4486. https://doi.org/10.1021/om100613x

    Article  CAS  Google Scholar 

  25. A. Muller, E. Krickemeyer, F. El-Katri, D. Rehder, A. Stammler, H. Bogge, and F. Hellweg. Z. Anorg. Allg. Chem., 1995, 621, 1160. https://doi.org/10.1002/zaac.19956210708

    Article  Google Scholar 

  26. M. Saito, M. Tokitoh, and R. Okazaki. Organometallics, 1996, 15, 4531. https://doi.org/10.1021/om960449u

    Article  CAS  Google Scholar 

  27. W. Ren, H. Song, G. Zi, and M. D. Walter. Dalton Trans., 2012, 41, 5965. http://dx.doi.org/10.1039/c2dt00051b

    Article  CAS  Google Scholar 

  28. P. Yang, E. Zhou, B. Fang, G. Hou, G. Zi, and M. D. Walter. Organometallics, 2016, 35, 2129. http://dx.doi.org/10.1021/acs.organomet.6b00357

  29. O. P. Lam, S. M. Franke, F. W. Heinemann, and K. Meyer. J. Am. Chem. Soc., 2012, 134, 16877. https://doi.org/10.1021/ja307539w

    Article  CAS  Google Scholar 

  30. R. Kelly, M. Falcone, C. A. Lamsfus R. Scopelliti, L. Maron, K. Meyerc, and M. Mazzanti. Chem. Sci., 2017, 8, 5319. https://doi.org/10.1039/c7sc01111c

    Article  CAS  Google Scholar 

  31. L. Arnold, C. J. Stevens, N. L. Bell, R. M. Lord, J. M. Goldberg, G. S. Nichola, and J. B. Love. Chem. Sci., 2017, 8, 3609. https://doi.org/10.1039/c7sc00382j

    Article  CAS  Google Scholar 

  32. O. Lam, L. Castro, B. Kosog, F. W. Heinemann, L. Maron, and K. Meyer. Inorg. Chem., 2012, 51, 781. https://doi.org/10.1021/ic202535e

    Article  CAS  Google Scholar 

  33. C. Camp, O. Cooper, J. Andrez, J. Pécauta, and M. Mazzanti. Dalton Trans., 2015, 44, 2650. https://doi.org/10.1039/c4dt02585g

    Article  CAS  Google Scholar 

  34. M. Falcone, L. Chatelain, and M. Mazzanti. Angew. Chem., Int. Ed., 2016, 55, 4074. https://doi.org/10.1002/anie.201600158

    Article  CAS  Google Scholar 

  35. A. Cleaves, C. E. Kefalidis, B. M. Gardner, F. Tuna, E. J. L. McInnes, W. Lewis, L. Maron, and S. T. Liddle. Chem. Eur. J., 2017, 23, 2950. https://doi.org/10.1002/chem.201605620

    Article  CAS  Google Scholar 

  36. C. Bianchini, C. Mealli, A. Meli, and M. Sabat. J. Am. Chem. Soc., 1985, 107, 5317. https://doi.org/10.1021/ja00304a072

    Article  CAS  Google Scholar 

  37. C. Bianchini, D. Masi, C. Mealli, A. Meli, M. Sabat, and F. Vizza. Inorg. Chem., 1988, 27, 3716. https://doi.org/10.1021/ic00294a009

    Article  CAS  Google Scholar 

  38. C. J. Burchell, S. M. Aucott, A. M. Z. Slawin, and J. D. Woollins. Dalton Trans., 2005, 735. https://doi.org/10.1039/B416356G

    Article  Google Scholar 

  39. J. Andrez, G. Bozoklu, G. Nocton. J. Pecaut, R. Scopelliti, L. Dubois, and M. Mazzanti. Chem. Eur. J., 2015, 21, 15188. https://doi.org/10.1002/chem.201502204

    Article  CAS  Google Scholar 

  40. W. J. Evans, C. A. Seibel, and J. W. Ziller. Inorg. Chem., 1998, 37, 770. https://doi.org/10.1021/ic971381t

    Article  CAS  Google Scholar 

  41. C. Schoo, S. Klementyeva, M. T. Gamer, S. N. Konchenko, and P. W. Roesky. Chem. Commun., 2016, 52, 6654. https://doi.org/10.1039/c6cc02450e

    Article  CAS  Google Scholar 

  42. W. J. Evans, T. A. Ulibarri, H. Schumann, and S. Nickel. In: Inorganic Syntheses, Vol. 28 / Ed. R. J. Angelici. Inorganic Syntheses, Inc., 1990, 297-300. https://doi.org/10.1002/9780470132593.ch74

    Chapter  Google Scholar 

  43. W. J. Evans, G. W. Rabe, J. W. Ziller, and R. J. Doedens. Inorg. Chem., 1994, 33, 2719. https://doi.org/10.1021/ic00091a009

    Article  CAS  Google Scholar 

  44. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  45. O. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  46. R. D. Shannon. Acta Crystallogr., Sect. A, 1976, 32, 751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 16-13-10294) and the Ministry of Science and Higher Education of the Russian Federation (projects No. 121031700321-3, 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Konchenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 11, 100561.https://doi.org/10.26902/JSC_id100561

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savkov, B.Y., Sukhikh, T.S. & Konchenko, S.N. SAMAROCENECHALCOGENIDES \(\mathbf{[\{Cp}_{\mathbf{2}}^{\mathbf{*}}\mathbf{Sm(THF)}{{\mathbf{\}}}_{\mathbf{2}}}\mathbf{(\mu }\text{-}Q\mathbf{)]}\) (Q = S, SE, TE) AS SYNTHETIC EQUIVALENTS OF THE Q2– SYNTHON IN REACTIONS WITH CS2. J Struct Chem 63, 1734–1744 (2022). https://doi.org/10.1134/S0022476622110026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622110026

Keywords

Navigation