Skip to main content
Log in

CuI COMPLEXES BASED ON DI(2-PYRIDYL) (2-AROYLETHENYL)PHOSPHINE OXIDES: SYNTHESIS, STRUCTURE, AND DARK RED PHOTOLUMINESCENCE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

By the interaction of CuI with bis(2-pyridyl)phosphine oxides (2-Py)2RP(O) containing E-1-phenyl-2-aroylethenyl–C(Ph)=CHC(O)R′ (R′ = Ph, 2-thienyl) substituents, [Cu2I2L2] complexes are synthesized. Their structures are based on the rhomboidal Cu2I2 moiety whose copper atoms are N,N′-chelated by the indicated ligands. At room temperature, the crystalline samples of these complexes exhibit dark red photoluminescence (λmax = 680-685 nm) with a charge transfer from the Cu2I2 moiety to the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. R. Czerwieniec, M. J. Leitl, H. H. H. Homeier, and H. Yersin. Coord. Chem. Rev., 2016, 325, 2-28. https://doi.org/10.1016/j.ccr.2016.06.016

    Article  CAS  Google Scholar 

  2. J. Troyano, F. Zamora, and S. Delgado. Chem. Soc. Rev., 2021, 50, 4606-4628. https://doi.org/10.1039/D0CS01470B

    Article  CAS  PubMed  Google Scholar 

  3. C. E. Housecroft and E. C. Constable. J. Mater. Chem. C, 2022, 10, 4456-4482. https://doi.org/10.1039/D1TC04028F

    Article  CAS  Google Scholar 

  4. W. Liu, Y. Fang, and J. Li. Adv. Funct. Mater., 2018, 28, 1705593. https://doi.org/10.1002/adfm.201705593

    Article  CAS  Google Scholar 

  5. M. F. Galimova, E. M. Zueva, A. B. Dobrynin, I. E. Kolesnikov, R. R. Musin, E. I. Musina, and A. A. Karasik. Dalton Trans., 2021, 50, 13421-13429. https://doi.org/10.1039/D1DT02344F

    Article  CAS  PubMed  Google Scholar 

  6. T. S. Sukhikh, R. M. Khisamov, and S. N. Konchenko. Molecules, 2021, 26, 2030. https://doi.org/10.3390/molecules26072030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Kirst, J. Tietze, P. Mayer, H.-C. Böttcher, and K. Karaghiosoff. ChemistryOpen, 2022, 11, e202100224. https://doi.org/10.1002/open.202100224

    Article  PubMed  PubMed Central  Google Scholar 

  8. A. M. Khalil, C. Xu, V. Delmas, G. Calvez, K. Costuas, M. Haouas, and C. Lescop. Inorg. Chem. Front., 2021, 8, 4887-4895.

  9. F. Moutier, J. Schiller, G. Calvez, and C. Lescop. Org. Chem. Front., 2021, 8, 2893-2902. https://doi.org/10.1039/D1QO00538C

    Article  CAS  Google Scholar 

  10. C. Lescop. Chem. Rec., 2020, 21, 544-557.

  11. S. Evariste, A. M. Khalil, S. Kerneis, C. Xu, G. Calvez, K. Costuas, and C. Lescop. Inorg. Chem. Front., 2020, 7, 3402-3411. https://doi.org/10.1039/D0QI00691B

    Article  CAS  Google Scholar 

  12. N. A. Shekhovtsov, T. E. Kokina, K. A. Vinogradova, A. Y. Panarin, M. I. Rakhmanova, D. Y. Naumov, N. V. Pervukhina, E. B. Nikolaenkova, V. P. Krivopalov, R. Czerwieniec, and M. B. Bushuev. Dalton Trans., 2022, 51, 2898-2911. https://doi.org/10.1039/D1DT04325K

    Article  CAS  PubMed  Google Scholar 

  13. K. A. Vinogradova, V. P. Krivopalov, E. B. Nikolaenkova, N. V. Pervukhina, D. Y. Naumov, E. G. Boguslavsky, and M. B. Bushuev. Dalton Trans., 2016, 45, 515-524. https://doi.org/10.1039/C5DT04005A

    Article  CAS  PubMed  Google Scholar 

  14. K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, M. I. Rakhmanova, N. V. Pervukhina, D. Yu. Naumov, L. A. Sheludyakova, E. B. Nikolaenkova, V. P. Krivopalov, and M. B. Bushuev. Dalton Trans., 2014, 43, 2953-2960. https://doi.org/10.1039/C3DT53040J

    Article  CAS  PubMed  Google Scholar 

  15. Y.-Q. Chen, G.-R. Li, Z. Chang, Y.-K. Qu, Y.-H. Zhang, and X.-H. Bu. Chem. Sci., 2013, 4, 3678-3682. https://doi.org/10.1039/C3SC00057E

    Article  CAS  Google Scholar 

  16. X. Wang, X. Tian, Q. Zhang, P. Sun, J. Wu, H. Zhou, B. Jin, J. Yang, S. Zhang, C. Wang, X. Tao, M. Jiang, and Y. Tian. Chem. Mater., 2012, 24, 954-961. https://doi.org/10.1021/cm2029855

    Article  CAS  Google Scholar 

  17. K. Tsugea, Y. Chishina, H. Hashiguchi, Y. Sasaki, M. Kato, S. Ishizaka, and N. Kitamura. Coord. Chem. Rev., 2016, 306, 636-651. https://doi.org/10.1016/j.ccr.2015.03.022

    Article  CAS  Google Scholar 

  18. S. N. Arbuzova, N. K. Gusarova, T. E. Glotova, I. A. Ushakov, S. I. Verkhoturova, A. O. Korocheva, and B. A. Trofimov. Eur. J. Org. Chem., 2014, 639-643. https://doi.org/10.1002/ejoc.201301453

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian09, Revision C.01. Wallingford, CT: Gaussian, 2010.

  20. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. J. Chem. Phys., 1994, 98, 11623-11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  21. P. J. Hay and W. R. Wadt. J. Chem. Phys., 1985, 82, 299-310. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick. SADABS: Program for Empirical Absorption Correction of Area Detector Data. Göttingen, Germany: University of Göttingen, 2002.

  23. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  24. A. Bondi. Phys. Chem., 1964, 68, 441-451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  25. A. V. Artemev, M. R. Ryzhikov, I. V. Taidakov, M. I. Rakhmanova, E. A. Varaksina, I. Yu. Bagryanskaya, S. F. Malysheva, and N. A. Belogorlova. Dalton Trans., 2018, 47, 2701-2710. https://doi.org/10.1039/C7DT04758D

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (projects Nos. 121031700321-3, 121021000199-6) using the material and facilities of the Baikal Analytical Multi-Access Center, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Artem΄ev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 9, 99099.https://doi.org/10.26902/JSC_id99099

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzova, S.N., Verkhoturova, S.I., Borodina, T.N. et al. CuI COMPLEXES BASED ON DI(2-PYRIDYL) (2-AROYLETHENYL)PHOSPHINE OXIDES: SYNTHESIS, STRUCTURE, AND DARK RED PHOTOLUMINESCENCE. J Struct Chem 63, 1383–1389 (2022). https://doi.org/10.1134/S0022476622090013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622090013

Keywords

Navigation