Skip to main content
Log in

EFFECT OF THE STRUCTURAL FEATURES OF METAL PHTHALOCYANINE FILMS ON THEIR ELECTROPHYSICAL PROPERTIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In the last decade, many publications have been devoted to the application of metal phthalocyanine (MPc) films as semiconductor layers in organic field-effect transistors, diodes, and chemical sensors. The possibilities to use MPcs as semiconductor materials are determined by the method and conditions of depositing the material on a substrate to obtain ordered structures with highly conductive and mobile charge carriers, which in turn depend on the structural features of films, namely, the phase composition, orientation, and morphology of the surface. The review summarizes the research works on the study of structure and morphology effects of thin MPc films obtained by physical vapor deposition on their electrophysical properties over the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

REFERENCES

  1. D. Gounden, N. Nombona, and W. E. van Zyl. Coord. Chem. Rev., 2020, 420, 213359. https://doi.org/10.1016/j.ccr.2020.213359

    Article  CAS  Google Scholar 

  2. A. Kumar, R. Meunier-Prest, and M. Bouvet. Sensors, 2020, 20, 1. https://doi.org/10.3390/s20174700

    Article  CAS  PubMed Central  Google Scholar 

  3. D. D. Klyamer, D. V. Bonegardt, and T. V. Basova. Chemosensors, 2021, 9, 133. https://doi.org/10.3390/chemosensors9060133

    Article  CAS  Google Scholar 

  4. E. A. Kuzmina, T. V. Dubinina, and L. G. Tomilova. New J. Chem., 2019, 43, 9314. https://doi.org/10.1039/c9nj01755k

    Article  CAS  Google Scholar 

  5. S. Ouedraogo, R. Meunier-Prest, A. Kumar, M. Bayo-Bangoura, and M. Bouvet. ACS Sens., 2020, 5, 1849. https://doi.org/10.1021/acssensors.0c00877

    Article  CAS  PubMed  Google Scholar 

  6. M. A. Díaz-García. J. Porphyrins Phthalocyanines, 2009, 13, 652. https://doi.org/10.1142/s1088424609000784

    Article  Google Scholar 

  7. O. A. Melville, B. H. Lessard, and T. P. Bender. ACS Appl. Mater. Interfaces, 2015, 7, 13105. https://doi.org/10.1021/acsami.5b01718

    Article  CAS  PubMed  Google Scholar 

  8. W. Zhou, N. J. Yutronkie, B. H. Lessard, and J. L. Brusso. Mater. Adv., 2021, 2, 165. https://doi.org/10.1039/d0ma00864h

    Article  CAS  Google Scholar 

  9. T. V. Basova, V. G. Kiselev, V. A. Plyashkevich, P. B. Cheblakov, F. Latteyer, H. Peisert, and T. Chassè. Chem. Phys., 2011, 380, 40. https://doi.org/10.1016/j.chemphys.2010.12.004

    Article  CAS  Google Scholar 

  10. H. A. Afify, A. S. Gadallah, M. M. El-Nahass, and M. Atta Khedr. J. Mol. Struct., 2015, 1098, 161. https://doi.org/10.1016/j.molstruc.2015.06.016

    Article  CAS  Google Scholar 

  11. C. Wang, X. Chen, F. Chen, and J. Shao. Org. Electron., 2019, 66, 183. https://doi.org/10.1016/j.orgel.2018.12.035

    Article  CAS  Google Scholar 

  12. Y. Acikbas, M. Erdogan, R. Capan, C. Ozkaya, Y. Baygu, N. Kabay, and Y. Gök. Optik, 2021, 245, 167661. https://doi.org/10.1016/j.ijleo.2021.167661

    Article  CAS  Google Scholar 

  13. B. Agboola and T. Nyokong. Anal. Chim. Acta, 2007, 587, 116. https://doi.org/10.1016/j.aca.2007.01.031

    Article  CAS  PubMed  Google Scholar 

  14. T. Mirabito, B. Huet, A. L. Briseno, and D. W. Snyder. J. Cryst. Growth, 2020, 533, 125484. https://doi.org/10.1016/j.jcrysgro.2020.125484

    Article  CAS  Google Scholar 

  15. K. V. A. Kumar, S. Raghavendra, S. V. Rao, S. Hamad, and S. M. Dharmaprakash. Optik, 2015, 126, 5918. https://doi.org/10.1016/j.ijleo.2015.08.209

    Article  CAS  Google Scholar 

  16. D. D. Klyamer, A. S. Sukhikh, P. O. Krasnov, S. A. Gromilov, N. B. Morozova, and T. V. Basova. Appl. Surf. Sci., 2016, 372, 79. https://doi.org/10.1016/j.apsusc.2016.03.066

    Article  CAS  Google Scholar 

  17. Y. G. Zhen, H. L. Dong, L. Jiang, and W. P. Hu. Chin. Chem. Lett., 2016, 27, 1330. https://doi.org/10.1016/j.cclet.2016.06.023

    Article  CAS  Google Scholar 

  18. R. R. Cranston and B. H. Lessard. RSC Adv., 2021, 11, 21716. https://doi.org/10.1039/d1ra03853b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. M. Bayliss, S. Heutz, G. Rumbles, and T. S. Jones. Phys. Chem. Chem. Phys., 1999, 1, 3673. https://doi.org/10.1039/a904089g

    Article  CAS  Google Scholar 

  20. M. J. Cook and I. Chambrier. In: The Porphyrin Handbook / Eds. K. Kadish, R. Guilard, and K. M. Smith. Academic Press, 2003, 37. https://doi.org/10.1016/B978-0-08-092391-8.50008-X

    Chapter  Google Scholar 

  21. A. K. Hassan and R. D. Gould. Phys. Status Solidi, 1992, 132, 91. https://doi.org/10.1002/pssa.2211320110

    Article  CAS  Google Scholar 

  22. S. I. Shihub and R. D. Gould. Phys. Status Solidi, 1993, 139, 129. https://doi.org/10.1002/pssa.2211390110

    Article  CAS  Google Scholar 

  23. M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman. Opt. Laser Technol., 2003, 35, 523. https://doi.org/10.1016/S0030-3992(03)00068-9

    Article  CAS  Google Scholar 

  24. S. Hammer, T. Ferschke, G. V. Eyb, and J. Pflaum. Appl. Phys. Lett., 2019, 115. https://doi.org/10.1063/1.5132698

    Article  CAS  Google Scholar 

  25. N. S. Lebedeva, E. V Parfenyuk, and E. A. Malkova. Spectrochim. Acta, Part A, 2007, 68, 491. https://doi.org/10.1016/j.saa.2006.12.015

    Article  CAS  Google Scholar 

  26. C. H. Griffiths, M. S. Walker, and P. Goldstein. Mol. Cryst. Liq. Cryst., 1976, 33, 149. https://doi.org/10.1080/15421407608083878

    Article  CAS  Google Scholar 

  27. W. Hiller, J. Strähle, W. Kobel, and M. Hanack. Zeit. Krist. – New Cryst. Struct., 1982, 159, 173. https://doi.org/10.1524/zkri.1982.159.1-4.173

    Article  CAS  Google Scholar 

  28. D. D. Klyamer, A. S. Sukhikh, S. A. Gromilov, V. N. Kruchinin, E. V. Spesivtsev, A. K. Hassan, and T. V. Basova. Macroheterocycles, 2018, 11, 304. https://doi.org/10.6060/mhc180794b

    Article  CAS  Google Scholar 

  29. A. S. Sukhikh, D. D. Klyamer, R. G. Parkhomenko, P. O. Krasnov, S. A. Gromilov, A. K. Hassan, and T. V. Basova. Dyes Pigm., 2018, 149, 348. https://doi.org/10.1016/j.dyepig.2017.10.024

    Article  CAS  Google Scholar 

  30. H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng, and C. Kloc. Sci. Rep., 2014, 4, 1. https://doi.org/10.1038/srep07573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. D. Klyamer. Issledovanie vliyaniya strukturnykh osobennostei plenok ftorzameshchennykh ftalotsianinov metallov MPcFx (x = 4, 16, M = Co, Cu, Zn, Pd, Fe, VO, Pb) na ikh sensornyi otklik na ammiak (Investigation of the Influense of Fluorosubstituted Metal Phthalocyanine MPcFx (x = 4, 16, M = Co, Cu, Zn, Pd, Fe, VO, Pb) Thin Films Structural Features on Their Sensor Response to Ammonia): Cand. (Chem.). Dissertation. Novosibirsk: Nikolaev Institute of Inorganic Chemistry, 2021. [n Russian]

  32. N. M. Kuprikova, D. D. Klyamer, A. S. Sukhikh, P. O. Krasnov, I. Mrsic, and T. V. Basova. Dyes Pigm., 2020, 173, 107939. https://doi.org/10.1016/j.dyepig.2019.107939

    Article  CAS  Google Scholar 

  33. D. D. Klyamer, A. S. Sukhikh, S. V. Trubin, S. A. Gromilov, N. B. Morozova, T. V. Basova, and A. K. Hassan. Cryst. Growth Des., 2020, 20, 1016. https://doi.org/10.1021/acs.cgd.9b01350

    Article  CAS  Google Scholar 

  34. A. S. Sukhikh, M. S. Polyakov, D. D. Klyamer, S. A. Gromilov, and T. V. Basova. J. Struct. Chem., 2017, 58(5), 1039. https://doi.org/10.1134/S0022476617050262

    Article  CAS  Google Scholar 

  35. Y. L. Lee, H. Y. Wu, C. H. Chang, and Y. M. Yang. Thin Solid Films, 2003, 423, 169. https://doi.org/10.1016/S0040-6090(02)01051-9

    Article  CAS  Google Scholar 

  36. N. V. Usoltseva, A. I. Smirnova, A. V. Kazak, N. I. Giricheva, N. E. Galanin, G. P. Shaposhnikov, V. V. Bodnarchuk, and S. V. Yablonskii. Opto-Electron. Rev., 2017, 25, 127. https://doi.org/10.1016/j.opelre.2017.03.003

    Article  Google Scholar 

  37. Y. Zhang, X. Wei, H. Zhang, X. Chen, and J. Wang. Appl. Surf. Sci., 2018, 427, 452. https://doi.org/10.1016/j.apsusc.2017.08.116

    Article  CAS  Google Scholar 

  38. B. E. Schuster, T. V. Basova, V. A. Plyashkevich, H. Peisert, and T. Chassé. Thin Solid Films, 2010, 518, 7161. https://doi.org/10.1016/j.tsf.2010.06.030

    Article  CAS  Google Scholar 

  39. S. Sinha, C. H. Wang, M. Mukherjee, and Y. W. Yang. J. Phys. D: Appl. Phys., 2014, 47, 245103. https://doi.org/10.1088/0022-3727/47/24/245103

    Article  CAS  Google Scholar 

  40. A. Hoshino, Y. Takenaka, and H. Miyaji. Acta Crystallogr., Sect. B: Struct. Sci., 2003, 59, 393. https://doi.org/10.1107/S010876810300942X

    Article  Google Scholar 

  41. S. A. Choi, K. Kim, S. J. Lee, H. Lee, A. Babajanyan, B. Friedman, and K. Lee. J. Lumin., 2016, 171, 149. https://doi.org/10.1016/j.jlumin.2015.11.015

    Article  CAS  Google Scholar 

  42. R. Davis, A. N. Asokan, and P. Predeep. J. Inorg. Organomet. Polym. Mater., 2020, 30, 4408. https://doi.org/10.1007/s10904-020-01587-6

    Article  CAS  Google Scholar 

  43. L. Vijayan, A. Thomas, K. S. Kumar, and K. B. Jinesh. J. Sci.: Adv. Mater. Devices, 2018, 3, 348. https://doi.org/10.1016/j.jsamd.2018.08.002

    Article  Google Scholar 

  44. A. A. Darwish, S. I. Qashou, and M. Rashad. Appl. Phys. A: Mater. Sci. Process., 2019, 125, 1. https://doi.org/10.1007/s00339-019-2559-z

    Article  CAS  Google Scholar 

  45. S. Nénon, D. Kanehira, N. Yoshimoto, F. Fages, and C. Videlot-Ackermann. Thin Solid Films, 2010, 518, 5593. https://doi.org/10.1016/j.tsf.2010.04.035

    Article  CAS  Google Scholar 

  46. F. C. Wu, H. L. Cheng, C. H. Yen, J. W. Lin, S. J. Liu, W. Y. Chou, and F. C. Tang. Phys. Chem. Chem. Phys., 2010, 12, 2098. https://doi.org/10.1039/b914720a

    Article  CAS  PubMed  Google Scholar 

  47. S. Nénon, D. Kanehira, N. Yoshimoto, F. Fages, and C. Videlot-Ackermann. Thin Solid Films, 2010, 518, 5593. https://doi.org/10.1016/j.tsf.2010.04.035

    Article  CAS  Google Scholar 

  48. T. J. Liu, H. Y. Xia, B. Liu, T. S. Jones, M. Fang, and J. L. Yang. Chin. Phys. B, 2019, 28, 088101. https://doi.org/10.1088/1674-1056/28/8/088101

    Article  CAS  Google Scholar 

  49. Z. Zhang, L. Jiang, C. Cheng, Y. Zhen, G. Zhao, H. Geng, Y. Yi, L. Li, H. Dong, Z. Shuai, and W. Hu. Angew. Chem., 2016, 55, 5206. https://doi.org/10.1002/anie.201601065

    Article  CAS  Google Scholar 

  50. Y. Li, M. Pan, Y. Hu, Z. Wang, W. Lv, and Y. Peng. Thin Solid Films, 2021, 718, 138481. https://doi.org/10.1016/j.tsf.2020.138481

    Article  CAS  Google Scholar 

  51. Y. Li, J. Zhang, W. Lv, X. Luo, L. Sun, J. Zhong, F. Zhao, F. Huang, and Y. Peng. Synth. Met., 2015, 205, 190. https://doi.org/10.1016/j.synthmet.2015.04.011

    Article  CAS  Google Scholar 

  52. Y. Iyechika, K. Yakushi, I. Ikemoto, and H. Kuroda. Acta Crystallogr., Sect. B, 1982, 38, 766. https://doi.org/10.1107/s056774088200404x

    Article  Google Scholar 

  53. A. Miyamoto, K. Nichogi, A. Taomoto, T. Nambu, and M. Murakami. Thin Solid Films, 1995, 256, 64. https://doi.org/10.1016/0040-6090(94)06300-1

    Article  CAS  Google Scholar 

  54. J. Wright. Prog. Surf. Sci., 1989, 31, 1. https://doi.org/10.1016/0079-6816(89)90012-9

    Article  CAS  Google Scholar 

  55. M. K. Debe, R. J. Poirier, and K. K. Kam. Thin Solid Films, 1991, 197, 335. https://doi.org/10.1016/0040-6090(91)90244-r

    Article  CAS  Google Scholar 

  56. F. Djeghloul, F. Ibrahim, M. Cantoni, M. Bowen, L. Joly, S. Boukari, P. Ohresser, F. Bertran, P. Le Fèvre, P. Thakur, F. Scheurer, T. Miyamachi, R. Mattana, P. Seneor, A. Jaafar, C. Rinaldi, S. Javaid, J. Arabski, J.-P. Kappler, W. Wulfhekel, N. B. Brookes, R. Bertacco, A. Taleb-Ibrahimi, M. Alouani, E. Beaurepaire, and W. Weber. Sci. Rep., 2013, 3, 1. https://doi.org/10.1038/srep01272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian, J. Kurde, J. Miguel, M. Piantek, X. Xu, P. Eckhold, W. Kuch, K. Baberschke, P. M. Panchmatia, B. Sanyal, P. M. Oppeneer, and O. Eriksson. Nat. Mater., 2007, 6, 516. https://doi.org/10.1038/nmat1932

    Article  CAS  Google Scholar 

  58. J. C. Scott. J. Vac. Sci. Technol., 2003, 21, 521. https://doi.org/10.1116/1.1559919

    Article  CAS  Google Scholar 

  59. G. M. Pierantozzi, M. Sbroscia, and A. Ruocco. Surf. Sci., 2018, 669, 176. https://doi.org/10.1016/j.susc.2017.12.003

    Article  CAS  Google Scholar 

  60. B. Y. Shi and W. D. Dou. Org. Electron., 2018, 56, 240. https://doi.org/10.1016/j.orgel.2018.02.024

    Article  CAS  Google Scholar 

  61. A. J. Ramadan, L. A. Rochford, D. S. Keeble, P. Sullivan, M. P. Ryan, T. S. Jones, and S. Heutz. J. Mater. Chem. C, 2015, 3, 461. https://doi.org/10.1039/c4tc02116a

    Article  CAS  Google Scholar 

  62. K. P. Madhuri, P. Kaur, M. E. Ali, and N. S. John. J. Phys. Chem. C, 2017, 121, 9249. https://doi.org/10.1021/acs.jpcc.6b09240

    Article  CAS  Google Scholar 

  63. C. Qian, J. Sun, L. Zhang, H. Xie, H. Huang, J. Yang, and Y. Gao. Synth. Met., 2015, 210, 336. https://doi.org/10.1016/j.synthmet.2015.10.023

    Article  CAS  Google Scholar 

  64. H. Wang, F. Zhu, J. Yang, Y. Geng, and D. Yan. Adv. Mater., 2007, 19, 2168. https://doi.org/10.1002/adma.200602566

    Article  CAS  Google Scholar 

  65. W. Gu, Y. Hu, Z. Zhu, N. Liu, J. Zhang, and J. Wang. Solid State Electron., 2013, 89, 101. https://doi.org/10.1016/j.sse.2013.07.008

    Article  CAS  Google Scholar 

  66. F. Pan, H. Tian, X. Qian, L. Huang, Y. Geng, and D. Yan. Org. Electron., 2011, 12, 1358. https://doi.org/10.1016/j.orgel.2011.05.003

    Article  CAS  Google Scholar 

  67. S. Ruzgar, Y. Caglar, S. Ilican, and M. Caglar. Optik, 2017, 130, 61. https://doi.org/10.1016/j.ijleo.2016.10.115

    Article  CAS  Google Scholar 

  68. P. Londhe, N. B. Chaure, and A. Athawale. Mater. Sci. Eng. B, 2021, 273, 115397. https://doi.org/10.1016/j.mseb.2021.115397

    Article  CAS  Google Scholar 

  69. F. Ma, S. Wang, and X. Li. J. Phys. Chem. Solids, 2012, 73, 589. https://doi.org/10.1016/j.jpcs.2011.12.016

    Article  CAS  Google Scholar 

  70. N. Dong, X.-M. Wu, H.-Q. Dang, D.-Y. Liu, Q. Zhang, J. Wei, and S.-G. Yin. Chin. Phys. Lett., 2014, 31, 058501. https://doi.org/10.1088/0256-307x/31/5/058501

    Article  Google Scholar 

  71. Y. Li, Q. Liu, Y. Li, X. Wang, W. Huang, J. Ma, Y. Shi, X. Wang, and Z. Hu. Org. Electron., 2014, 15, 1799. https://doi.org/10.1016/j.orgel.2014.05.010

    Article  CAS  Google Scholar 

  72. J. Xu, X. Liu, W. Hou, H. Guo, L. Yu, and H. Zhang. Bull. Mater. Sci., 2018, 41, 1. https://doi.org/10.1007/s12034-018-1618-y

    Article  CAS  Google Scholar 

  73. J. Xu, X. Liu, H. Wang, W. Hou, L. Zhao, and H. Zhang. Solid State Electron., 2017, 127, 61. https://doi.org/10.1016/j.sse.2016.11.003

    Article  CAS  Google Scholar 

  74. P. Kumar, S. Yadav, N. Kumar, and L. Kumar. Solid State Electron., 2021, 176, 107954. https://doi.org/10.1016/j.sse.2020.107954

    Article  CAS  Google Scholar 

  75. H. C. Su, T. T. Tran, W. Bosze, and N. V. Myung. Sens. Actuators Rep., 2020, 2, 100011. https://doi.org/10.1016/j.snr.2020.100011

    Article  Google Scholar 

  76. A. Kumar, S. Samanta, S. Latha, A. K. Debnath, A. Singh, K. P. Muthe, and H. C. Barshilia. RSC Adv., 2017, 7, 4135. https://doi.org/10.1039/c6ra25185d

    Article  CAS  Google Scholar 

  77. D. V. Bonegardt, D. D. Klyamer, A. S. Sukhikh, P. O. Krasnov, P. S. Popovetskiy, and T. V. Basova. Chemosensors, 2021, 9(6), 137. https://doi.org/10.3390/chemosensors9060137

    Article  CAS  Google Scholar 

  78. J. Vlček, I. A. Kühne, D. Zákutná, E. Marešová, L. Fekete, J. Otta, P. Fitl, and M. Vrňata. CrystEngComm, 2021, 23, 7237. https://doi.org/10.1039/d1ce01014j

    Article  CAS  Google Scholar 

  79. D. D. Klyamer, A. S. Sukhikh, S. A. Gromilov, P. O. Krasnov, and T. V. Basova. Sensors, 2018, 18, 1. https://doi.org/10.3390/s18072141

    Article  CAS  PubMed Central  Google Scholar 

  80. M. J. Jafari, M. E. Azim-Araghi, S. Barhemat, and S. Riyazi. Surf. Interface Anal., 2012, 44, 601. https://doi.org/10.1002/sia.4831

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 21-73-10142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Basova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 93861.https://doi.org/10.26902/JSC_id93861

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyamer, D.D., Basova, T.V. EFFECT OF THE STRUCTURAL FEATURES OF METAL PHTHALOCYANINE FILMS ON THEIR ELECTROPHYSICAL PROPERTIES. J Struct Chem 63, 997–1018 (2022). https://doi.org/10.1134/S0022476622070010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070010

Keywords

Navigation