Skip to main content
Log in

EFFECT OF POLYMORPHISM ON THE LUMINESCENT PROPERTIES ON SILVER(I) NITRATE COMPLEXES WITH 2-AMINO-5-PHENYLPYRAZINE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction between AgNO3 and 2-amino-5-phenylpyrazine (L) at a molar ratio Ag:L = 1.5:1 (synthesis time 3-4 h) in the acetonitrile solution leads to the formation of [AgL2NO3] complex (1). According to the single crystal X-ray diffraction data, two L molecules are coordinated to each silver atom through the N1 atom of the pyrazine ring and one \(\text{NO}_{3}^{-}\) anion. Polymorph 2 is obtained by the reaction between AgNO3 and L at a 1:2 molar ratio and a short synthesis time (3-30 min). Complex 2 consists of two moieties ([AgL2]+ and [AgL2(NO3)2]) in which silver atoms have different coordination environments: almost linear and distorted tetrahedral respectively. In photoluminescence spectra of the solid complexes, two emission bands are observed, which appear after light irradiation with different wavelengths. Upon the excitation in the range of 300-400 nm, both complexes exhibit blue emission (λmax = 445 nm for 1, λmax= 430 nm for 2). Upon the excitation with λex = 440-500 nm, green emission is observed (λex = 545 nm for 1, λmax = 530 nm for 2). Both bands are characterized by the biexponential decay kinetics with nano- and microsecond lifetimes of the excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. C. Maity and N. Das. Top. Curr. Chem., 2022, 380, 3. https://doi.org/10.1007/s41061-021-00360-8

    Article  CAS  Google Scholar 

  2. M. Bengisu and M. Ferrara. Materials that Move. In: Materials that Move. SpringerBriefs in Applied Sciences and Technology. Springer, Cham, 2018, 5-38. https://doi.org/10.1007/978-3-319-76889-2

    Article  Google Scholar 

  3. R. Hamze, P. I. Djurovich, and M. E. Thompson. The WSPC Reference on Organic Electronics: Organic Semiconductors. World Scientific, 2016, Ch. 6.

  4. Y. F. Liu, J. Feng, Y. G. Bi, D. Yin, and H. B. Sun. Adv. Mater. Technol., 2019, 4. https://doi.org/10.1002/admt.201800371

    Article  CAS  Google Scholar 

  5. H. Yersin. In: Transition Metal and Rare Earth Compounds: Topics in Current Chemistry, Vol. 241. Berlin, Heidelberg: Springer, 2004, 1-26. https://doi.org/10.1007/b96858

    Chapter  Google Scholar 

  6. A. Barbieri, G. Accorsi, and N. Armaroli. Chem. Commun., 2008, 2185. https://doi.org/10.1039/b716650h

    Article  Google Scholar 

  7. E. M. Njogu, B. Omondi, and V. O. Nyamori. J. Coord. Chem., 2015, 68, 3389. https://doi.org/10.1080/00958972.2015.1070147

    Article  CAS  Google Scholar 

  8. X. P. Wang, T. P. Hu, and D. Sun. CrystEngComm, 2015, 17, 3393. https://doi.org/10.1039/C5CE00238A

    Article  CAS  Google Scholar 

  9. Y. Geng, W. Zhang, J. F. Song, R. S. Zhou, and W. Z. Jiao. Inorg. Chim. Acta, 2021, 528. https://doi.org/10.1016/j.ica.2021.120596

    Article  CAS  Google Scholar 

  10. S. Q. Luo, Q. Wang, J. Quan, M. Yang, Y. Wang, X. Zhang, and Z. N. Chen. Transition Met. Chem., 2021, 46, 415. https://doi.org/10.1007/s11243-021-00457-5

    Article  CAS  Google Scholar 

  11. Z. H. Xu, Z. Q. Huang, X. H. Liu, Y. Zhao, Y. Lu, and W. Y. Sun. Dalton Trans., 2021, 50, 2183. https://doi.org/10.1039/D0DT04100A

    Article  CAS  PubMed  Google Scholar 

  12. A. Kaeser, O. Moudam, G. Accorsi, I. Séguy, J. Navarro, A. Belbakra, C. Duhayon, N. Armaroli, B. Delavaux-Nicot, and J. F. Nierengarten. Eur. J. Inorg. Chem., 2014, 1345. https://doi.org/10.1002/ejic.201301349

    Article  CAS  Google Scholar 

  13. A. V. Artemev, M. Z. Shafikov, A. Schinabeck, O. V. Antonova, A. S. Berezin, I. Y. Bagryanskaya, P. E. Plusnin, and H. Yersin. Inorg. Chem. Front., 2019, 6, 3168. https://doi.org/10.1039/C9QI01069F

    Article  CAS  Google Scholar 

  14. M. I. Rogovoy, A. S. Berezin, D. G. Samsonenko, and A. V. Artemev. Inorg. Chem., 2021, 60, 6680. https://doi.org/10.1021/acs.inorgchem.1c00480

    Article  CAS  PubMed  Google Scholar 

  15. Z. Lei, S. S. Chang, and Q. M. Wang. Eur. J. Inorg. Chem., 2017, 2017, 5098. https://doi.org/10.1002/ejic.201701012

    Article  CAS  Google Scholar 

  16. M. Osawa, M. Hashimoto, I. Kawata, and M. Hoshino. Dalton Trans., 2017, 46, 12446. https://doi.org/10.1039/C7DT02460F

    Article  CAS  PubMed  Google Scholar 

  17. X. M. Gan, R. Yu, X. L. Chen, M. Yang, L. Lin, X. Y. Wu, and C. Z. Lu. Dalton Trans., 2018, 47, 5956. https://doi.org/10.1039/C8DT00837J

    Article  CAS  PubMed  Google Scholar 

  18. Y. Morishima, D. J. Young, and K. Fujisawa. Dalton Trans., 2014, 43, 15915. https://doi.org/10.1039/C4DT01978D

    Article  CAS  PubMed  Google Scholar 

  19. J. P. Zhang, X. L. Qi, Z. J. Liu, A. X. Zhu, Y. Chen, J. Wang, and X. M. Chen. Cryst. Growth Des., 2011, 11, 796. https://doi.org/10.1021/cg101435b

    Article  CAS  Google Scholar 

  20. C. v. Hettiarachchi, M. A. Rawashdeh-Omary, D. Korir, J. Kohistani, M. Yousufuddin, and H. V. R. Dias. Inorg. Chem., 2013, 52, 13576. https://doi.org/10.1021/ic402080y

    Article  CAS  PubMed  Google Scholar 

  21. A. Mizar, C. Pettinari, F. Marchetti, I. Timokhin, and A. Crispini. Inorg. Chem. Commun., 2012, 24, 20. https://doi.org/10.1016/j.inoche.2012.07.019

    Article  CAS  Google Scholar 

  22. X. Ren, D. J. Giesen, M. Rajeswaran, and M. Madaras. Organometallics, 2009, 28, 6079. https://doi.org/10.1021/om9006246

    Article  CAS  Google Scholar 

  23. F. L. Thorp-Greenwood, V. E. Pritchard, M. P. Coogan, and M. J. Hardie. Organometallics, 2016, 35, 1632. https://doi.org/10.1021/acs.organomet.6b00099

    Article  CAS  Google Scholar 

  24. J. E. Jones, B. M. Kariuki, B. D. Ward, and S. J. A. Pope. Dalton Trans., 2011, 40, 3498. https://doi.org/10.1039/c0dt01383h

    Article  CAS  PubMed  Google Scholar 

  25. A. S. Berezin, O. V. Antonova, E. V. Lider, A. I. Smolentsev, V. A. Nadolinny, and M. S. Melgunov. J. Lumin., 2017, 190, 261. https://doi.org/10.1016/j.jlumin.2017.05.024

    Article  CAS  Google Scholar 

  26. J. Li, K. Chen, J. Wei, Y. Ma, R. Zhou, S. Liu, Q. Zhao, and W.-Y. Wong. J. Am. Chem. Soc., 2021, 143, 18317. https://doi.org/10.1021/jacs.1c09272

    Article  CAS  PubMed  Google Scholar 

  27. S. H. Wu, D. X. Ma, Z. L. Gong, J. Ma, J. Y. Shao, R. Yang, and Y. W. Zhong. Crystals, 2021, 11(3), 236. https://doi.org/10.3390/cryst11030236

    Article  CAS  Google Scholar 

  28. J. Miao, Y. Nie, H. Du, X. Yang, C. Zhang, and H. Yan. Polyhedron 2019, 171, 338. https://doi.org/10.1016/j.poly.2019.07.028

    Article  CAS  Google Scholar 

  29. R. J. L. Edgar, P. I. P. Elliott, R. v. Fennessy, C. D. Gabbutt, B. M. Heron, S. J. A. Pope, A. Sinopoli, and C. R. Rice. Dyes Pigm., 2020, 175. https://doi.org/10.1016/j.dyepig.2019.108167

    Article  CAS  Google Scholar 

  30. T. E. Kokina, M. I. Rakhmanova, N. A. Shekhovtsov, L. A. Glinskaya, V. Y. Komarov, A. M. Agafontsev, A. Y. Baranov, P. E. Plyusnin, L. A. Sheludyakova, A. V. Tkachev, and M. B. Bushuev. Dalton Trans., 2020, 49, 7552. https://doi.org/10.1039/D0DT01438A

    Article  CAS  PubMed  Google Scholar 

  31. B. Zhou, G. Xiao, and D. Yan. Adv. Mater., 2021, 33. https://doi.org/10.1002/adma.202007571

    Article  CAS  Google Scholar 

  32. C. C. Hsu, C. C. Lin, P. T. Chou, C. H. Lai, C. W. Hsu, C. H. Lin, and Y. Chi. J. Am. Chem. Soc., 2012, 134, 7715. https://doi.org/10.1021/ja2107788

    Article  CAS  PubMed  Google Scholar 

  33. N. A. Shekhovtsov, K. A. Vinogradova, A. S. Berezin, T. S. Sukhikh, V. P. Krivopalov, E. B. Nikolaenkova, and M. B. Bushuev. Inorg. Chem. Front., 2020, 7, 2212. https://doi.org/10.1039/D0QI00254B

    Article  CAS  Google Scholar 

  34. M. I. Rogovoy, A. V. Tomilenko, D. G. Samsonenko, N. A. Nedolya, M. I. Rakhmanova, and A. V. Artemev. Mendeleev Commun., 2020, 30, 728. https://doi.org/10.1016/j.mencom.2020.11.013

    Article  CAS  Google Scholar 

  35. M. I. Rogovoy, T. S. Frolova, D. G. Samsonenko, A. S. Berezin, I. Yu. Bagryanskaya, N. A. Nedolya, O. A. Tarasova, V. P. Fedin, and A. V. Artemev. Eur. J. Inorg. Chem., 2020, 1635. https://doi.org/10.1002/ejic.202000109

    Article  CAS  Google Scholar 

  36. A. Yu. Baranov, M. I. Rakhmanova, D. G. Samsonenko, S. F. Malysheva, N. A. Belogorlova, I. Yu. Bagryanskaya, V. P. Fedin, and A. V. Artemev. Inorg. Chim. Acta, 2019, 494, 78. https://doi.org/10.1016/j.ica.2019.05.015

    Article  CAS  Google Scholar 

  37. M. I. Rogovoy, D. G. Samsonenko, M. I. Rakhmanova, and A. V. Artemev. Inorg. Chim. Acta, 2019, 489, 19. https://doi.org/10.1016/j.ica.2019.01.036

    Article  CAS  Google Scholar 

  38. D. Sun, G. G. Luo, N. Zhang, R. B. Huang, and L. S. Zheng. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2009, 65, m478. https://doi.org/10.1107/S0108270109045806

    Article  PubMed  Google Scholar 

  39. Y. Xu, F. Ding, D. Liu, P. P. Yang, and L. L. Zhu. J. Mol. Struct., 2018, 1155, 72. https://doi.org/10.1016/j.molstruc.2017.11.005

    Article  CAS  Google Scholar 

  40. J. A. do Nascimento Neto, A. K. S. M. Valdo, C. C. da Silva, F. F. Guimarães, L. H. K. Queiroz Jr., L. J. Q. Maia, R. C. de Santana, and F. T. Martins. J. Am. Chem. Soc., 2019, 141, 3400. https://doi.org/10.1021/jacs.8b13561

    Article  CAS  PubMed  Google Scholar 

  41. M. A. Lemes, J. A. do Nascimento Neto, F. Fernandes Guimarães, L. J. Q. Maia, R. C. de Santana, and F. Terra Martins. New J. Chem., 2020, 44, 20259. https://doi.org/10.1039/D0NJ04558F

    Article  CAS  Google Scholar 

  42. J. H. Dias Campos, M. E. Alvarenga, M. A. Lemes, J. A. do Nascimento Neto, F. F. Guimarães, L. J. Q. Maia, R. C. de Santana, and F. T. Martins. Dyes Pigm., 2021, 186. https://doi.org/10.1016/j.dyepig.2020.109025

    Article  CAS  Google Scholar 

  43. M. A. Lemes, J. A. N. Neto, F. F. Guimarães, L. J. Q. Maia, R. C. de Santana, and F. T. Martins. J. Mol. Struct., 2021, 1236. https://doi.org/10.1016/j.molstruc.2021.130352

    Article  CAS  Google Scholar 

  44. T. Kuwahara, H. Ohtsu, and K. Tsuge. Inorg. Chem., 2021, 60, 1299. https://doi.org/10.1021/acs.inorgchem.0c03329

    Article  CAS  PubMed  Google Scholar 

  45. D. Sun, G. G. Luo, N. Zhang, Q. J. Xu, R. B. Huang, and L. S. Zheng. Polyhedron, 2010, 29, 1243. https://doi.org/10.1016/j.poly.2009.12.038

    Article  CAS  Google Scholar 

  46. D. Sun, N. Zhang, G. G. Luo, Q. J. Xu, R. B. Huang, and L. S. Zheng. Polyhedron, 2010, 29, 1842. https://doi.org/10.1016/j.poly.2010.02.032

    Article  CAS  Google Scholar 

  47. D. Sun, G. G. Luo, N. Zhang, Q. J. Xu, Z. H. Wei, C. F. Yang, L. R. Lin, R. B. Huang, and L. S. Zheng. Bull. Chem. Soc. Jpn., 2010, 83, 173. https://doi.org/10.1246/bcsj.20090251

    Article  CAS  Google Scholar 

  48. D. Sun, G. G. Luo, Q. J. Xu, N. Zhang, Y. C. Jin, H. X. Zhao, L. R. Lin, R. B. Huang, and L. S. Zheng. Inorg. Chem. Commun., 2009, 12, 782. https://doi.org/10.1016/j.inoche.2009.06.016

    Article  CAS  Google Scholar 

  49. A. A. Massoud, A. Hefnawy, V. Langer, M. A. Khatab, L. Öhrstrom, and M. A. M. Abu-Youssef. Polyhedron, 2009, 28, 2794. https://doi.org/10.1016/j.poly.2009.05.064

    Article  CAS  Google Scholar 

  50. H. A. Tsai, M. C. Suen, P. N. Wang, Y. F. Hsu, and J. C. Wang. J. Coord. Chem., 2011, 64, 2658. https://doi.org/10.1080/00958972.2011.605123

    Article  CAS  Google Scholar 

  51. D. F. Wang, Z. H. Wang, T. Zhang, R. B. Huang, and L. S. Zheng. J. Mol. Struct., 2014, 1068, 210. https://doi.org/10.1016/j.molstruc.2014.04.021

    Article  CAS  Google Scholar 

  52. B. F. Abrahams, R. W. Elliott, T. A. Hudson, R. Robson, and A. L. Sutton. Cryst. Growth Des., 2015, 15, 2437. https://doi.org/10.1021/acs.cgd.5b00220

    Article  CAS  Google Scholar 

  53. S. Pagola, R. D. Pike, K. DeKrafft, and T. A. Tronic. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2008, 64, m134. https://doi.org/10.1107/S010827010800231X

    Article  CAS  PubMed  Google Scholar 

  54. J. Conesa-Egea, J. Gallardo-Martínez, S. Delgado, J. I. Martínez, J. Gonzalez-Platas, V. Fernández-Moreira, U. R. Rodríguez-Mendoza, P. Ocón, F. Zamora, and P. Amo-Ochoa. Small, 2017, 13, 1700965. https://doi.org/10.1002/smll.201700965

    Article  CAS  Google Scholar 

  55. M. A. S. Goher, F. A. Mautner, B. Sodin, and B. Bitschnau. J. Mol. Struct., 2008, 879, 96. https://doi.org/10.1016/j.molstruc.2007.08.021

    Article  CAS  Google Scholar 

  56. J. Boonmak, S. Youngme, N. Chaichit, G. A. van Albada, and J. Reedijk. Cryst. Growth Des., 2009, 9, 3318. https://doi.org/10.1021/cg9001175

    Article  CAS  Google Scholar 

  57. A. D. Burrows, M. F. Mahon, P. R. Raithby, A. J. Warren, S. J. Teat, and J. E. Warren. CrystEngComm, 2012, 14, 3658. https://doi.org/10.1039/c2ce06709a

    Article  CAS  Google Scholar 

  58. D. F. Wang, Z. H. Wang, T. Zhang, S. M. Dai, R. B. Huang, and L. S. Zheng. Inorg. Chim. Acta, 2014, 415, 61. https://doi.org/10.1016/j.ica.2014.02.042

    Article  CAS  Google Scholar 

  59. P. Wang, K. Chen, Q. Liu, H. W. Wang, M. Azam, S. I. Al-Resayes, Y. Lu, and W. Y. Sun. Dalton Trans., 2017, 46, 11425. https://doi.org/10.1039/C7DT02231J

    Article  CAS  PubMed  Google Scholar 

  60. A. Hossain, S. K. Seth, A. Bauzá, S. Mukhopadhyay, and A. Frontera. Polymers, 2018, 10, 182. https://doi.org/10.3390/polym10020182

    Article  CAS  PubMed Central  Google Scholar 

  61. L. Yang, L. Yan, Y. Wang, Z. Liu, J. He, Q. Fu, D. Liu, X. Gu, P. Dai, L. Li, and X. Zhao. Angew. Chem., Int. Ed. Engl., 2021, 60, 4570. https://doi.org/10.1002/anie.202013965

    Article  CAS  Google Scholar 

  62. W. Xu, Y. Zhao, H. Wang, H. Wang, F. Pan, R. Xu, and H. Hou. Chem. – Eur. J., 2021, 27, 5011. https://doi.org/10.1002/chem.202005474

    Article  CAS  PubMed  Google Scholar 

  63. D. Sun, G. G. Luo, N. Zhang, Q. J. Xu, C. F. Yang, Z. H. Wei, Y. C. Jin, L. R. Lin, R. B. Huang, and L. S. Zheng. Inorg. Chem. Commun., 2010, 13, 290. https://doi.org/10.1016/j.inoche.2009.12.005

    Article  CAS  Google Scholar 

  64. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2. Madison, WI: Bruker AXS, 2017.

  65. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  66. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  67. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  68. J. Charland and L. Beauchamp. J. Crystallogr. Spectrosc. Res., 1985, 15, 581. https://doi.org/10.1007/BF01164773

    Article  CAS  Google Scholar 

  69. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed. New Jersey: John Wiley, 2014, Ch. 1.1.

  70. K. Yamamoto, K. Hamase, and K. Zaitsu. J. Chromatogr. A, 2003, 1004, 99. https://doi.org/10.1016/S0021-9673(03)00452-7

    Article  CAS  PubMed  Google Scholar 

  71. K. A. Vinogradova, N. A. Shekhovtsov, A. S. Berezin, T. S. Sukhikh, V. P. Krivopalov, E. B. Nikolaenkova, I. М. Plokhikh, and M. B. Bushuev. Inorg. Chem. Commun., 2019, 100, 11. https://doi.org/10.1016/j.inoche.2018.12.002

    Article  CAS  Google Scholar 

  72. T. S. Sukhikh, R. M. Khisamov, D. A. Bashirov, V. Y. Komarov, M. S. Molokeev, A. A. Ryadun, E. Benassi, and S. N. Konchenko. Cryst. Growth Des., 2020, 20, 5796. https://doi.org/10.1021/acs.cgd.0c00406

    Article  CAS  Google Scholar 

  73. K. A. Vinogradova, M. I. Rakhmanova, E. B. Nikolaenkova, V. P. Krivopalov, M. B. Bushuev, N. V. Pervukhina, D. Yu. Naumov, and S. A. Martynova. Russ. J. Coord. Chem., 2022, 48, 301. https://doi.org/10.1134/S1070328422050098

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the grant of the President of the Russian Federation for young scientists (project No. MK-1219.2020.3) and the Ministry of Science and Higher Education of the Russian Federation (projects Nos. 121031700315-2 and 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Sukhikh.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 3, pp. 384-400.https://doi.org/10.26902/JSC_id91982

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhova, Y.A., Sukhikh, T.S., Rakhmanova, M.I. et al. EFFECT OF POLYMORPHISM ON THE LUMINESCENT PROPERTIES ON SILVER(I) NITRATE COMPLEXES WITH 2-AMINO-5-PHENYLPYRAZINE. J Struct Chem 63, 485–500 (2022). https://doi.org/10.1134/S0022476622030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622030155

Keywords

Navigation