Skip to main content
Log in

USING VORONOI DIAGRAMS TO INTERPRET BULK PROPERTIES OF SOLUTIONS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It is shown on the example of the analysis of bulk properties of an aqueous tert-butanol solution that the structure of solution can be better understood using the volumes of their different components. Within molecular dynamics models of solutions, their individual components and volumes can be determined using the Voronoi partition. This is an additional information with respect to the traditional approach where bulk characteristics are calculated from the total solution density. The Voronoi molar volumes of components, components of excess molar volume of the solution, and the apparent alcohol volume are calculated. The nature of the minimum on the apparent volume curve and the association of tert-butanol molecules in water at low concentrations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. W. S. Price, H. Ide, and Y. Arata. J. Phys. Chem. A, 2003, 107(24), 4784–4789.

    Article  CAS  Google Scholar 

  2. G. Onori and A. Santucci. J. Mol. Liq., 1996, 69(9), 161–181.

    Article  CAS  Google Scholar 

  3. D. Subramanian, J. B. Klauda, J. Leys, and M. A. Anisimov. Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2013, (1), 139–152.

  4. M. Freda, G. Onori, and A. Santucci. Phys. Chem. Chem. Phys., 2002, 4(20), 4979–4984.

    Article  CAS  Google Scholar 

  5. A. Di Michele, M. Freda, G. Onori, M. Paolantoni, A. Santucci, and P. Sassi. J. Phys. Chem. B, 2006, 110(42), 21077–21085.

    Article  CAS  PubMed  Google Scholar 

  6. T. M. Bender and R. Pecora. J. Phys. Chem., 1986, 90(8), 1700–1706.

    Article  CAS  Google Scholar 

  7. G. W. Euliss and C. M. Sorensen. J. Chem. Phys., 1984, 80(10), 4767–4773.

    Article  CAS  Google Scholar 

  8. K. Iwasaki and T. Fujiyama. J. Phys. Chem., 1977, 81(20), 1908–1912.

    Article  CAS  Google Scholar 

  9. K. Iwasaki and T. Fujiyama. J. Phys. Chem., 1979, 83(4), 463–468.

    Article  CAS  Google Scholar 

  10. K. Nishikawa, Y. Kodera, and T. Iijima. J. Phys. Chem., 1987, 91(13), 3694–3699.

    Article  CAS  Google Scholar 

  11. K. Nishikawa, H. Hayashi, and T. Iijima. J. Phys. Chem., 1989, 93(17), 6559–6565.

    Article  CAS  Google Scholar 

  12. K. Nishikawa and T. Iijima. J. Phys. Chem., 1990, 94(16), 6227–6231.

    Article  CAS  Google Scholar 

  13. M. Freda, G. Onori, and A. Santucci. J. Phys. Chem. B, 2001, 105(51), 12714–12718.

    Article  CAS  Google Scholar 

  14. M. Freda, G. Onori, and A. Santucci. J. Mol. Struct., 2001, 565–566, 153–157.

    Article  CAS  Google Scholar 

  15. A. Di Michele, M. Freda, G. Onori, and A. Santucci. J. Phys. Chem. A, 2004, 108(29), 6145–6150.

    Article  CAS  Google Scholar 

  16. K. Mizuno, Y. Kimura, H. Morichika, Y. Nishimura, S. Shimada, S. Maeda, S. Imafuji, and T. Ochi. J. Mol. Liq., 2000, 85(1–2), 139–152.

    Article  CAS  Google Scholar 

  17. D. S. Wilcox, B. M. Rankin, and D. Ben-Amotz. Faraday Discuss., 2013, 167, 177.

    Article  CAS  PubMed  Google Scholar 

  18. R. Sinibaldi, C. Casieri, S. Melchionna, G. Onori, A.L. Segre, S. Viel, L. Mannina, and F. De Luca. J. Phys. Chem. B, 2006, 110(17), 8885–8892.

    Article  CAS  PubMed  Google Scholar 

  19. D. Fioretto, A. Marini, M. Massarotti, G. Onori, L. Palmieri, A. Santucci, and G. Socino. J. Chem. Phys., 1993, 99(10), 8115–8119.

    Article  CAS  Google Scholar 

  20. P. G. Kusalik, A. P. Lyubartsev, D. L. Bergman, and A. Laaksonen. J. Phys. Chem. B, 2000, 104(40), 9533–9539.

    Article  CAS  Google Scholar 

  21. S. Banerjee, J. Furtado, and B. Bagchi. J. Chem. Phys., 2014, 140(19), 194502.

    Article  CAS  PubMed  Google Scholar 

  22. S. Paul and G. N. Patey. J. Phys. Chem. B, 2006, 110(21), 10514–10518.

    Article  CAS  PubMed  Google Scholar 

  23. A. Fornili, M. Civera, M. Sironi, and S. L. Fornili. Phys. Chem. Chem. Phys., 2003, 5(21), 4905–4910.

    Article  CAS  Google Scholar 

  24. E. D. Kadtsyn, A. V. Anikeenko, and N. N. Medvedev. J. Mol. Liq., 2019, 286, 110870.

    Article  CAS  Google Scholar 

  25. A. V. Anikeenko, E. D. Kadtsyn, and N. N. Medvedev. J. Mol. Liq., 2017, 245, 35–41.

    Article  CAS  Google Scholar 

  26. D. Bandyopadhyay, Y. Kamble, and N. Choudhury. J. Phys. Chem. B, 2018, 122(34), 8220–8232.

    Article  CAS  PubMed  Google Scholar 

  27. S. D. Overduin, A. Perera, and G. N. Patey. J. Chem. Phys., 2019, 150(18), 184504.

    Article  CAS  PubMed  Google Scholar 

  28. R. Gupta and G. N. Patey. J. Chem. Phys., 2012, 137(3), 034509.

    Article  PubMed  Google Scholar 

  29. G. I. Egorov and D. M. Makarov. J. Chem. Thermodyn., 2011, 43(3), 430–441.

    Article  CAS  Google Scholar 

  30. Y. M. Kessler and A. L. Zaytsev. Solvofobnyye Effekty. Teor., Eksp., Prakt. [in Russian]. Chemistry: Leningrad, 1989.

  31. O. Y. Samoilov. Strukt. Vodn. Rastvorov Elektrolitov & Gidratatsiya Ionov [in Russian]. AS USSR: Moscow, 1976.

  32. G. G. Malenkov. J. Struct. Chem., 1966, 7(3), 331–336.

  33. H. S. Frank, M.W. Evans. J. Chem. Phys., 1945, 13(11), 507–532.

    Article  CAS  Google Scholar 

  34. H. S. Frank and W.-Y. Wen. Discuss. Faraday Soc., 1957, 24, 133.

    Article  Google Scholar 

  35. H. S. Frank. J. Chem. Phys., 1945, 13(11), 493–507.

    Article  CAS  Google Scholar 

  36. H. S. Frank. J. Chem. Phys., 1945, 13(11), 478–492.

    Article  CAS  Google Scholar 

  37. M. G. Kiselev, S. Y. Noskov, Y. P. Purhovskii, and A. Y. Tsivadze. Teor. & Eksp. Metody Khim. Rastvorov [in Russian]. Prospekt: Moskow, 2011.

  38. D. van der Spoel, and P. J. van Maaren, C. Caleman. Bioinformatics, 2012, 28(5), 752–753.

    Article  CAS  PubMed  Google Scholar 

  39. C. Caleman, P.J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, and D. van der Spoel. J. Chem. Theory Comput., 2012, 8(1), 61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. L. F. Abascal and C. Vega. J. Chem. Phys., 2005, 123(23), 234505.

    Article  CAS  PubMed  Google Scholar 

  41. G. Bussi, D. Donadio, and M. Parrinello. J. Chem. Phys., 2007, 126(1), 014101.

    Article  CAS  PubMed  Google Scholar 

  42. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. J. Chem. Phys., 1984, 81(8), 3684–3690.

    Article  CAS  Google Scholar 

  43. M. Parrinello and A. Rahman. J. Appl. Phys., 1981, 52(12), 7182–7190.

    Article  CAS  Google Scholar 

  44. S. Nosé and M. L. Klein. Mol. Phys., 1983, 50(5), 1055–1076.

    Article  Google Scholar 

  45. T. Darden, D. York, and L. Pedersen. J. Chem. Phys., 1993, 98(12), 10089–10092.

    Article  CAS  Google Scholar 

  46. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. J. Chem. Phys., 1995, 103(19), 8577–8593.

    Article  CAS  Google Scholar 

  47. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije. J. Comput. Chem., 1997, 18(12), 1463–1472.

    Article  CAS  Google Scholar 

  48. A. Okabe. In: Int. Encycl. Geogr.: People Earth, Environ. Technol. John Wiley & Sons, 2017, 1–11.

  49. N. N. Medvedev. Metod Voronogo-Delone Issled. Strukt. Nekrist. Syst. [in Russian]. SB RAS: Novosibirsk, 2000.

  50. E. A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press: New York, 1961.

  51. N. N. Medvedev, V. P. Voloshin, V. A. Luchnikov, and M. L. Gavrilova. J. Comput. Chem., 2006, 27(14), 1676–1692.

    Article  CAS  PubMed  Google Scholar 

  52. S. V. Anishchik and N. N. Medvedev. Phys. Rev. Lett. Am. Phys. Soc., 1995, 75(23), 4314–4317.

    Article  CAS  PubMed  Google Scholar 

  53. F. Aurenhammer. SIAM J. Comput., 16(1), 78–96.

    Article  Google Scholar 

  54. V. P. Voloshin, N. N. Medvedev, M. N. Andrews, R. R. Burri, R. Winter, and A. Geiger. J. Phys. Chem. B, 2011, 115(48), 14217–14228.

    Article  CAS  PubMed  Google Scholar 

  55. R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein, J. M. Swails, C. X. Hernández, C. R. Schwantes, L.-P. Wang, T. J. Lane, and V. S. Pande. Biophys. J., 2015, 109(8), 1528–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. C. Rycroft. Voro++: A Three-Dimensional Voronoi Cell Library in C++. Berkeley, CA, 2009.

    Book  Google Scholar 

  57. B. Fábián, M. Sega, V. P. Voloshin, N. N. Medvedev, and P. Jedlovszky. J. Phys. Chem. B, 2017, 121(13), 2814–2824.

    Article  CAS  PubMed  Google Scholar 

  58. A. Geiger, N. N. Medvedev, and Y. I. Naberukhin. J. Struct. Chem., 1992, 33(2), 226–234.

    Article  Google Scholar 

  59. V. P. Voloshin, A. V. Kim, N. N. Medvedev, and R. Winter, A. Geiger. Biophys. Chem., 2014, 192, 1–9.

    Article  CAS  PubMed  Google Scholar 

  60. L. D. Landau and E. M. Lifshitz. Statistical Physics. Elsevier, 1980, 363–385.

Download references

Funding

The reported study was funded by RFBR, project number 18-03-00045, and the Russian Foundation for Basic Research, project number 19-33-90205, graduate students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Medvedev.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadtsyn, E.D., Nichiporenko, V.A. & Medvedev, N.N. USING VORONOI DIAGRAMS TO INTERPRET BULK PROPERTIES OF SOLUTIONS. J Struct Chem 62, 58–69 (2021). https://doi.org/10.1134/S0022476621010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621010078

Keywords

Navigation