Skip to main content
Log in

WEAK INTERACTIONS IN DIMETHYLANILINE AND ITS DERIVATIVES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The work juxtaposes electron density distributions in N,N-dimethylaniline, its three parasubstituted derivatives, two orthosubstituted derivatives of benzoic acid, 2-[4-[(dimethylamino)-phenyl]diazenil]benzoic acid (methyl red), and benzene. Intramolecular weak interactions C⋯H, H⋯H, and O⋯N and the rings they form are considered within the “quantum theory of atoms in molecules” (QTAIM). The characteristics of QTAIM bonds at critical points are found. The stability of rings is estimated; relative stability of C⋯H and O⋯N bonds stabilizing spatial molecular configuration in methyl red is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Khimicheskaya Entsiklopediya (Chemical Encyclopedia) [in Russian] / Eds. N. S. Zefirov and N. N. Kulov. Vol. 5. Bol′shaya Rossiyskaya Entsiklopediya: Moscow, 1998.

  2. I. M. Skvortsov, E. E. Fedorov, and S. P. Mushtakova. Zh. Fiz. Khim., 1986, 60(8), 2065.

  3. V. V. Moskva. Sorosovskiy Obraz. Zh.: Khim., 1999, 2, 58.

  4. Vodorodnaya Svyaz′ (Hydrogen bond) [in Russian] / Eds. N. D. Sokolov and V. M. Chulanovskiy. Nauka: Moscow, 1964.

  5. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford University Press: Oxford, 1994.

  6. V. I. Minkin, B. Ya. Simkin, and R. M. Minyayev. Teoriya Stroyeniya Molekul (Molecular Structure Theory) [in Russian]. Feniks: Rostov-na-Donu, 1997.

  7. V. G. Tsirelson. Kvantovaya khimiya: Molekuly, Molekulyarnyye Sistemy i Tverdyye Tela (Quantum Chemistry: Molecules, Molecular Systems and Solids) [in Russian]. Binom: Moscow, 2014.

  8. V. P. Novikov, S. Samdal, and L. V. Vilkov. Russ. J. Gen. Chem., 2004, 74(8), 1247.

  9. S. A. Semenov, D. V. Drobot, V. Y. Musatova, A. S. Pronin, A. D. Pomogailo, and G. I. Dzhardimalieva. Russ. J. Inorg. Chem., 2016, 61(1), 59.

  10. A. V. Vashchenko and A. V. Afonin. J. Struct. Chem., 2014, 55(6), 1010.

  11. N. P. Rusakova, V. V. Turovtsev, and Y. D. Orlov. J. Struct. Chem., 2015, 56(1), 22.

  12. N. P. Rusakova, A. G. Zavyalova, V. V. Turovtsev, S. A. Tretyakov, Yu. A. Fedina, and Yu. D. Orlov. Vestn. Tver. Gos. Univ., Ser. Khim., 2019, 4, 14.

  13. V. P. Glazunov, D. V. Berdyshev, N. N. Balaneva, O. S. Radchenko, and V. L. Novikov. J. Appl. Spectrosc., 2018, 85(1), 9.

  14. O. I. Pokrovskii, K. B. Ustinovich, O. O. Parenago, and V. V. Lunin. Russ. J. Phys. Chem. A, 2013, 87(9), 1542.

  15. E. V. Valiev and M. I. Sheikh-Zade. Uch. Zap. Krym. Fed. Univ. im. V. I. Vernadskogo. Biol. Khim., 2018, 4(1), 188.

  16. Yu. V. Ivanov. Innovatsion. Podkhody Sovrem. Nauka, 2011, 5(1), 19.

  17. S. Sharifi, M. F. Nazar, F. Rakhshanizadeh, S. A. Sangsefedi, and A. Azarpour. Opt. Quantum Electron., 2020, 52, 98.

  18. S.-K. Park, Ch. Lee, K.-Ch. Min, and N.-S. Lee. Bull. Korean Chem. Soc., 2005, 26(8), 1170.

  19. D. Zheng, X.-A. Yuan, and J. Ma. Acta Phys.-Chim. Sin., 2016, 32(1), 290.

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03. Revision E 0.1, SMP. Gaussian: Pittsburgh, PA, 2007.

  21. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer. J. Comput. Chem., 1983, 4(3), 294.

  22. Todd A. Keith. AIMAll. Version 11.09.18, Professional. 2011. http://aim.tkgristmill.com.

Download references

Funding

The work was performed within the State Contract No. 4.6469.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Rusakova.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusakova, N.P., Turovtsev, V.V. & Orlov, Y.D. WEAK INTERACTIONS IN DIMETHYLANILINE AND ITS DERIVATIVES. J Struct Chem 61, 1845–1851 (2020). https://doi.org/10.1134/S0022476620120021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620120021

Keywords

Navigation