Skip to main content
Log in

Molecular Virtual Screening Studies of Herbicidal Sulfonylurea Analogues Using Molecular Docking and Topomer CoMFA Research

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of 45 sulfonylurea herbicidals is established using the Topomer comparative molecular field analysis (Topomer CoMFA). The results show that correlation coefficient (q2), non-cross-validation correlation coefficient (r2), and external validation (Q 2ext ) are 0.884, 0.908, and 0.857 respectively. The biological evaluation demonstrates that the obtained model has the excellent external predictive ability and good estimation stability. The methodology of the fragment-based drug design is also applied to design new sulfonylurea herbicides using the Topomer Search technology. Compound 11 with the highest activity is chosen as the template molecule. By adding three substitutional groups selected from the ZINC database to the template molecule, 36 new compounds with an activity more than that of the template molecule are obtained. The template molecular and designed compounds are used to explore the binding relationship of the ligands with the receptor protein in molecular docking. The result shows that hydrogen bonding interactions form between the ligands and amino acid residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Saja, M. Rys, I. Stawoska, and A. Skoczowski. Acta Physiol Plant., 2016, 38(7), 1.

    Article  CAS  Google Scholar 

  2. B. L. Wang, Y. X. Shi, S. J. Zhang, and Y. Ma. Eur. J. Med. Chem., 2016, 117(19), 167.

    Article  CAS  PubMed  Google Scholar 

  3. G. Levitt. ACS Symp. Ser., 1991, 443, 6.

    Google Scholar 

  4. M. H. Dong, H. F. Chen, and Y. J. Ren. Bioorg. Med. Chem., 2015, 24(2), 73.

    Article  CAS  PubMed  Google Scholar 

  5. K. Roy, S. Kar, and P. Ambure. Chemom. Intell. Lab. Syst., 2015, 145, 22.

    Article  CAS  Google Scholar 

  6. R. D. Cramer, P. Cruz, and G. Stahl. J. Chem. Inf. Mode., 2008, 48(11), 2180.

    Article  CAS  Google Scholar 

  7. R. J. Jilek and R. D. Cramer. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1221.

    Article  CAS  PubMed  Google Scholar 

  8. R. M. Asath, T. N. Rekha, S. Premkumar, T. Mathavan, et al. J. Mol. Struct., 2016, 1125(5), 633.

    Article  CAS  Google Scholar 

  9. J. A. Mccourt, S. S. Pang, L. W. Guddat, and R. G. Duggleby. Biochemistry US., 2005, 44(7), 238.

    Article  CAS  Google Scholar 

  10. K. Roy and S. Paul. J. Mol. Model., 2010, 6(5), 951.

    Article  CAS  Google Scholar 

  11. W. Wei, D. D. Cheng, J. B. Liu, and Y. X. Li. Org. Biomol. Chem., 2016, 14(35), 8356.

    Article  CAS  PubMed  Google Scholar 

  12. J. G. Wang, P. K. Lee, and Y. H. Dong. FEBS J., 2009, 276(5), 1282.

    Article  CAS  PubMed  Google Scholar 

  13. C. Vats, J. K. Dhanjal, S. Goyal, N. Bharadvaja, and A. Grover. Struct. Chem., 2015, 26, 467.

    Article  CAS  Google Scholar 

  14. C. Xu and Y. J. Ren. Bioorg. Med. Chem. Lett., 2015, 25(20), 4522.

    Article  CAS  PubMed  Google Scholar 

  15. G. Tresaderna, J. M. Cidb, and A. A. Trabanco. J. Mol. Graph. Model., 2014, 53, 82.

    Article  CAS  Google Scholar 

  16. G. Subramanian and S. N. Rao. Bioorg. Med. Chem., 2012, 20(20), 851.

    Article  CAS  PubMed  Google Scholar 

  17. D. D. Huang, Y. L. Liu, B. Z. Shi, Y. T. Li, G. X. Wang, and G. Z. Liang. J. Mol. Graph Model., 2013, 45(18), 65.

    Article  CAS  PubMed  Google Scholar 

  18. H. Zhi, J. X. Zheng, and Y. Q. Chang. J. Mol. Struct., 2015, 1098(5), 199.

    Article  CAS  Google Scholar 

  19. A. Singh, S. Goyal, S. Jamal, and B. Subramani. Struct. Chem., 2016, 27(3), 993.

    Article  CAS  Google Scholar 

  20. Y. Y. Lv, C. S. Yin, and H. Y. Liu. J. Environ Sci., 2008, 20(12), 1433.

    Article  CAS  Google Scholar 

  21. X. Y. Wu and W. H. Chen. Int J. Mol. Sci., 2012, 13(2), 2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. B. Bhonsle, V. Divakaramenon, and D. P. Huddler. J. Med. Chem., 2008, 50(26), 6545.

    Article  CAS  Google Scholar 

  23. P. P. Roy, J. T. Leonard, and K. Roy. Intell. Lab., 2008, 90(1), 31.

    Article  CAS  Google Scholar 

  24. Y. H. Xiang, J. Song, and Z. Y. Zhang. Comb. Chem. High Throughput Screening, 2014, 17(5), 45.

    Article  CAS  Google Scholar 

  25. J. B. Tong, M. Bai, and X. Zhao. Med. Chem. Res., 2016, 25(11), 2619.

    Article  CAS  Google Scholar 

  26. M. M. Ghorab, F. A. Ragab, and H. I. Heiba. Eur. J. Med. Chem., 2016, 117(19), 8.

    Article  CAS  PubMed  Google Scholar 

  27. X. Q. Yan, Z. C. Wang, Z. Li, and P. F. Wang. Med. Chem. Lett., 2015, 25(20), 4664.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tong.

Additional information

Zhurnal Strukturnoi Khimii, Vol. 60, No. 2, pp. 222–230, February, 2019.

Electronic supplementary material

10947_2019_1126_MOESM1_ESM.pdf

Molecular Virtual Screening Studies of Herbicidal Sulfonylurea Analogues Using Molecular Docking and Topomer CoMFA Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J., Jiang, G., Li, L. et al. Molecular Virtual Screening Studies of Herbicidal Sulfonylurea Analogues Using Molecular Docking and Topomer CoMFA Research. J Struct Chem 60, 210–218 (2019). https://doi.org/10.1134/S0022476619020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619020057

Keywords

Navigation