Skip to main content
Log in

An Xps Study of Solid Solutions Mo1–XNbxS2 (0 < x < 0.15)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Solid solutions Mo1–xNbxS2 (x = 0, 0.05, 0.10, and 0.15) crystallizing in the hexagonal structure 2H-MoS2 are synthesized. The samples are characterized by powder X-ray diffraction (XRD) and Raman spectroscopies, X-ray photoelectron spectroscopy (XPS), and quantum chemical calculations (DFT). The changes occurring in the electronic properties of high-resistivity semiconductor MoS2 and indicating metallic behavior of obtained solid solutions Mo1–xNbxS2 are not accompanied by substantial changes in the atomic photoelectron spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wilson and A. D. Yoffe. Adv. Phys., 1969, 18(73), 193.

    Article  CAS  Google Scholar 

  2. E. Zhang, Y. B. Jin, X. Yuan, W. Y. Wang, C. Zhang, L. Tang, S. S. Liu, P. Zhou, W. D. Hu, and F. X. Xiu. Adv. Funct. Mater., 2015, 25(26), 4076.

    Article  CAS  Google Scholar 

  3. M. W. Lin, I. I. Kravchenko, J. Fowlkes, X. F. Li, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, and K. Xiao. Nanotechnology, 2016, 27, 16.

    Google Scholar 

  4. L. M. Ruan, H. Z. Zhao, D. D. Li, S. F. Jin, S. M. Li, L. Gu, and J. K. Liang. J. Electron. Mater., 2016, 45(6), 2926.

    Article  CAS  Google Scholar 

  5. G. Zhang and Y.–W. Zhang. J. Mater. Chem. C, 2017, 5(31), 7684.

    Article  CAS  Google Scholar 

  6. S. Dou, J. H. Wu, L. Tao, A. L. Shen, J. Huo, and S. Y. Wang. Nanotechnology, 2016, 27, 4.

    Google Scholar 

  7. A. P. Murthy, J. Theerthagiri, J. Madhavan, and K. Murugan. Phys. Chem. Chem. Phys., 2017, 19(3), 1988.

    Article  CAS  PubMed  Google Scholar 

  8. T. Stephenson, Z. Li, B. Olsen, and D. Mitlin. Energy Environ. Sci., 2014, 7(1), 209.

    Article  CAS  Google Scholar 

  9. V. A. Kuznetsov, A. S. Berdinsky, A. Y. Ledneva, S. B. Artemkina, M. S. Tarasenko, and V. E. Fedorov. Sens. Actuators A, 2015, 226, 5.

    Article  CAS  Google Scholar 

  10. H. Luo, Y. J. Cao, J. Zhou, J. M. Feng, J. M. Cao, and H. Guo. Chem. Phys. Lett., 2016, 643, 27.

    Article  CAS  Google Scholar 

  11. J. Zhu, H. Zhang, Y. W. Tong, L. Zhao, Y. F. Zhang, Y. Z. Qiu, and X. N. Lin. Appl. Surf. Sci., 2017, 419, 522.

    Article  CAS  Google Scholar 

  12. A. A. Tedstone, D. J. Lewis, and P. O′Brien. Chem. Mater., 2016, 28(7), 1965.

    Article  CAS  Google Scholar 

  13. E. D. Grayfer, M. N. Kozlova, and V. E. Fedorov. Adv. Colloid. Interface, 2017, 245, 40.

    Article  CAS  Google Scholar 

  14. H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li, and Y. Cui. Chem. Soc. Rev., 2015, 44(9), 2664.

    Article  CAS  PubMed  Google Scholar 

  15. A. I. Romanenko, G. E. Yakovleva, V. E. Fedorov, A. Yu. Ledneva, V. A. Kuznetsov, A. V. Sotnikov, A. R. Tsygankova, and B. M. Kuchumov. J. Struct. Chem., 2017, 58(5), 893.

    Article  CAS  Google Scholar 

  16. B. F. Mentzen and M. J. Sienko. Inorg. Chem., 1976, 15(9), 2198.

    Article  CAS  Google Scholar 

  17. G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim, and V. E. Fedorov. 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (Mipro), 2016, 5.

    Google Scholar 

  18. G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, V. A. Kuznetsov, A. Yu. Ledneva, S. B. Artemkina, and V. E. Fedorov. Semiconductors, 2017, 51(6), 725.

    Article  CAS  Google Scholar 

  19. V. E. Fedorov, N. G. Naumov, A. N. Lavrov, M. S. Tarasenko, S. B. Artemkina, A. I. Romanenko, and M. V. Medvedev. 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (Mipro), 2013, 11.

    Google Scholar 

  20. S. A. Dalmatova, A. D. Fedorenko, L. N. Mazalov, I. P. Asanov, A. Y. Ledneva, M. S. Tarasenko, A. N. Enyashin, and V. E. Fedorov. Nanoscale, 2018.

    Google Scholar 

  21. L. N. Mazalov. X–ray Spectra and Chemical Bonding [in Russian], Nauka, Novosibirsk, 1982.

    Google Scholar 

  22. Casa Software Ltd, CasaXPS Manual 2.3.15. CasaXPS Processing Software, 2009.

  23. N. S. Mcintyre, P. A. Spevack, G. Beamson, and D. Briggs. Surf. Sci., 1990, 237(1–3), L390.

    Google Scholar 

  24. S. Ozkar, G. A. Ozin, and R. A. Prokopowicz. Chem. Mater., 1992, 4(6), 1380.

    Article  CAS  Google Scholar 

  25. J. R. Lince, T. B. Stewart, M. M. Hills, P. D. Fleischauer, J. A. Yarmoff, and A. Talebibrahimi. Surf. Sci., 1989, 223(1–2), 65.

    Google Scholar 

  26. L. Benoist, D. Gonbeau, G. Pfisterguillouzo, E. Schmidt, G. Meunier, and A. Levasseur. Surf. Interface Anal., 1994, 22(1–12), 206.

    Google Scholar 

  27. B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, and K. Siegbahn. Phys. Scr., 1970, 1(5–6), 286.

    Google Scholar 

  28. A. R. H. F. Ettema and C. Haas. J. Phys. Condens. Matter, 1993, 5(23), 3817.

    Article  CAS  Google Scholar 

  29. R. Fontaine, R. Caillat, L. Feve, and M. J. Guittet. J. Electron Spectrosc. Relat. Phenom., 1977, 10(4), 349.

    Article  CAS  Google Scholar 

  30. A. Daccà, G. Gemme, L. Mattera, and R. Parodi. Surf. Sci. Spectra, 1998, 5(4), 332.

    Article  Google Scholar 

  31. NIST X–ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20 Gaithersburg MD 20899: National Institute of Standards and Technology, 2000.

  32. P. Hohenberg and W. Kohn. Phys. Rev., 1964, 136(3B), B864.

    Google Scholar 

  33. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez–Portal. J. Phys. Condens. Matter., 2002, 14(11), 2745.

    Article  CAS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77(18), 3865.

    Article  CAS  PubMed  Google Scholar 

  35. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat. Adv. Funct. Mater., 2012, 22(7), 1385.

    Article  CAS  Google Scholar 

  36. K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito. Phys. Rev. B, 2013, 88(7), 075420.

    Article  CAS  Google Scholar 

  37. A. Kuc and T. Heine. Chem. Soc. Rev., 2015, 44(9), 2603.

    Article  CAS  PubMed  Google Scholar 

  38. S. P. Gabuda, S. G. Kozlova, M. R. Ryzhikov, and V. E. Fedorov. J. Phys. Chem. C, 2012, 116(38), 20651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Fedorov.

Additional information

Original Russian Text © 2018 A. Yu. Ledneva, S. A. Dalmatova, A. D. Fedorenko, I. P. Asanov, A. N. Enyashin, L. N. Mazalov, V. E. Fedorov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 8, pp. 1896–1903, November-December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledneva, A.Y., Dalmatova, S.A., Fedorenko, A.D. et al. An Xps Study of Solid Solutions Mo1–XNbxS2 (0 < x < 0.15). J Struct Chem 59, 1833–1840 (2018). https://doi.org/10.1134/S0022476618080115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618080115

Keywords

Navigation