Skip to main content
Log in

Solvent Effect on The Equilibrium and Rate Constant of the Tautomeric Reaction in Nexium, Skelaxin, Aldara and Efavirenz Drugs: A Dft Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Some drugs have two tautomeric structures in the liquid state and the tautomeric equilibrium is formed between these structures. The reaction rate and equilibrium constant of this reaction varies in different solvents. Thus, the determination of the appropriate solvent to separate tautomers is important. In this research, we used the DFT level of B3LYP and the 6-311++G** basis set to obtain the proper solvent for Nexium, Skelaxin, Aldara and Efavirenz drugs. All calculations were made above the melting point of the mentioned drugs, because these drugs are solid at room temperature. The solvent effect is included in the calculation utilizing the polarizable continuum model PCM. The transition state of the tautomeric reaction is determined using the quadratic synchronous transit (QST2) method. The geometry, energy, and dipole moment of transition states are analyzed in different solvent. The root mean square deviation (RMSD) analysis is performed to determine the degree of a structure deviation of tautomer 1 and tautomer 2 from the transition state in different solvents. It is found that the RMSD value for tatumer1 is higher than that for tautomer 2 in all studied drugs. The proper solvent for the separation of tautomers is determined from the analysis of thermodynamics and kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Katritzky, C. D. Hall, B. E.-D. M. El-Gendy, and B. Draghici. J. Comput.–Aided Mol. Des., 2010, 24,475.

    Article  CAS  PubMed  Google Scholar 

  2. Y. C. Martin. J. Comput.–Aided Mol. Des., 2009, 23,693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. McKeage, S. K. Blick, J. D. Croxtall, K. A. Lyseng-Williamson KA, and G. M. Keating. Drugs, 2008, 68, 1571.

    Article  CAS  PubMed  Google Scholar 

  4. P. Miner, P. O. Katz, Y. Chen, and M. Sostek. Am. J. Gastroenterol., 2003, 98, 2616.

    Article  CAS  PubMed  Google Scholar 

  5. P. O. Katz, J. M. Scheiman, and A. N. Barkun. Aliment Pharmacol. Ther., 2006, 23,9.

    Article  CAS  PubMed  Google Scholar 

  6. L. J. Scott, C. J. Dunn, G. Mallarkey, and M. Sharpe. Drugs, 2002, 62, 1503.

    Article  CAS  PubMed  Google Scholar 

  7. J. L. Poklis, J. D. Ropero-Miller, D. Garside, and R. E. Winecker. J. Forensic Sci., 2003, 48,432.

    Google Scholar 

  8. R. B. Bruce, L. Turnbull. J. Newman, and J. Pitts. J. Med. Chem., 1966, 99,286.

    Article  Google Scholar 

  9. R. W. Dent and D. K. Ervin. Curr. Ther. Res., 1975, 18,433.

    PubMed  Google Scholar 

  10. K. Fathie. Curt. Ther. Res., 1964, 11,677.

    Google Scholar 

  11. A. J. Wagstaff and C. M. Perry. Drugs, 2007, 67, 2187.

    Article  CAS  PubMed  Google Scholar 

  12. S. Salasche and S. Shumack. Clin. Exp. Dermatol., 2003, 28,1.

    Article  PubMed  Google Scholar 

  13. S. Tyring, M. Conant, M. Marini, W. Van Der Meijden, and K. Washenik. Int. J. Dermatol., 2002, 41,810.

    Article  CAS  PubMed  Google Scholar 

  14. L. Edwards. J Am Acad Dermatol., 43, 2000,12.

    Article  Google Scholar 

  15. R. Gaida, I. Truter, and C. Grobler. S. Afr. J. Psychiatr., 2015, 21,94.

    Article  Google Scholar 

  16. G. I. T. Cavalcante, S. M. M. Vasconcelos, D. S. Macêdo, F. C. F. Sousa, D. J. Woods, and M. M. F. Fonteles. Int. J. Neurosci., 2010, 120,739.

    Article  CAS  PubMed  Google Scholar 

  17. A. D. Becke. J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  18. R. G. Parr and W. Yang. Density-functional theory of atoms, molecules. New York: Oxford University Press, 1989.

    Google Scholar 

  19. S. Miertus, E. Scrocco, and J. Tomasi. Chem. Phys., 1981, 55,117.

    Article  CAS  Google Scholar 

  20. M. J. Frisch, et al. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  21. H. Eyring. J. Chem. Phys., 1935, 3,107.

    Article  CAS  Google Scholar 

  22. D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, and M. Hassanali. Nucleic Acids Res., 2008, 36(Suppl 1), D901–D906.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sargolzaei.

Additional information

Original Russian Text © 2018 M. Sargolzaei, M. Afshar, H. Nikoofard.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 2, pp. 309–317, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargolzaei, M., Afshar, M. & Nikoofard, H. Solvent Effect on The Equilibrium and Rate Constant of the Tautomeric Reaction in Nexium, Skelaxin, Aldara and Efavirenz Drugs: A Dft Study. J Struct Chem 59, 297–305 (2018). https://doi.org/10.1134/S0022476618020063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618020063

Keywords

Navigation