Skip to main content
Log in

Variation of the Intersection Point of the Potential Surface Crossing Induced by the Laser Phase Along the Reaction Path in Ion-Molecule Reactions: Application To Li+ + CH4

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A laser ion-molecule reaction interaction through both polarizability and dipole moment contribution leads to variation in the intersection point in potential energy surface crossings along the reaction path; the polarizability is maximum and the dipole changes its sign at s = 4 a.u., defining a virtual transition state. Using the gauge representation (electric field gauge) for a wave length λ = 20.6 μm, intensity I = 5×1012 W/cm2, I = 1×1013 W/cm2, I = 3×1013 W/cm2, we show here that we can create a laser-induced potential energy surface crossing along the reaction path (s = 7-8 a.u.). We illustrate such effects for the Li H + CH +3 ↔ Li+ + CH4 reaction which takes the form of inverted Morse (without a barrier) using ab initio methods for calculating the reaction path and electric properties of the ion-molecule reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Bandrauk and H. Kono, in: Advances in Multiphoton Processes, Spectroscopy, S. H. Lin (ed.), vol. 15, World Scientific, Singapore (2003), p. 150.

    Google Scholar 

  2. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes, Wiley-Interscience, N. Y. (2003).

    Google Scholar 

  3. G. Paulus et al., Phys. Rev. Lett., 91, 253004 (2003).

    Article  CAS  Google Scholar 

  4. V. S. Yakovlev et al., Appl. Phys., B76, 329 (2003).

    Article  Google Scholar 

  5. S. Chelkowski and A. D. Bandrauk, Phys. Rev., A65, 061802 (2002).

    Article  Google Scholar 

  6. A. E. Orel and W. H. Miller, Chem. Phys. Lett., 57, 362 (1978) J. Chem. Phys., 73, 241 (1980).

    Article  CAS  Google Scholar 

  7. A. E. Orel and W. H. Miller, J. Chem. Phys., 70, 4393 (1979).

    Article  CAS  Google Scholar 

  8. T. Brabec and F. Krausz, Rev. Mod. Phys., 72, 545 (2000).

    Article  CAS  Google Scholar 

  9. A. D. Bandrauk and M. S. Child, Mol. Phys., 19, 95 (1970).

    Article  CAS  Google Scholar 

  10. D. G. Truhlar and A. D. Isaacson, J. Chem. Phys., 77, 3516 (1982).

    Article  CAS  Google Scholar 

  11. M. Tag El-Din Kamal, S. El-Wallid Sedik, and H. Talaat, Z. Phys. Chem., 222, 1693 (2008).

    Article  Google Scholar 

  12. V. Ramatmurthy et al., Chem. Commun., 2003 (1987).

  13. S. Chelkowski and A. D. Bandrauk, Opt. Lett., 29, 13 (2004).

    Article  Google Scholar 

  14. M. C. Heaven, in: Chemical Dynamics in Extreme Environments, R. A. Dressler (ed.), World Scientific, Singapore (2000).

  15. L. V. Keldysh, Sov. Phys., J. Exp. Theor. Phys., 20, 1307 (1965).

    Google Scholar 

  16. P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett., 62, 1259 (1989).

    Article  CAS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, N. Y. (1965).

    Google Scholar 

  18. C. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, Phys. Rev., A59, 1382 (1999).

    Article  Google Scholar 

  19. H. Stapelfeldt and T. Seideman, Rev. Mod. Phys., 75, 543 (2003).

    Article  CAS  Google Scholar 

  20. L. Pan, K. T. Taylor, and C. W. Clark, J. Opt. Soc. Am., B7, 509 (1990).

    Article  Google Scholar 

  21. A. D. Bandrauk and S. Chelkowski, Phys. Rev. Lett., 84, 3562 (2000).

    Article  CAS  Google Scholar 

  22. J. Levesque, S. Chelkowski, and A. D. Bandrauk, J. Phys. Chem., 107, 3457 (2003).

    Article  CAS  Google Scholar 

  23. C. Moller and M. S. Plesset, Phys. Rev., 46, 618 (1934).

    Article  CAS  Google Scholar 

  24. M. J. Frisch et al., Gaussian 2003, Gaussian Inc., Pittsburgh PA (2003).

    Google Scholar 

  25. K. Fukui, J. Phys. Chem., 74, 4161 (1970).

    Article  CAS  Google Scholar 

  26. K. Fukui, Acc. Chem. Res., 14, 363 (1981).

    Article  CAS  Google Scholar 

  27. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 90, 2154 (1989).

    Article  CAS  Google Scholar 

  28. C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 94, 5523 (1990).

    Article  CAS  Google Scholar 

  29. H. Talaat, A. H. Moussa, M. Shalaby, S. El-Wallid Sedik, and M. Tag El-Din Kamal, Russ. J. Phys. Chem., 87, 454 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Wallid S. Sedik.

Additional information

Original Russian Text © 2018 M. Tag El-Din Kamal, El-Wallid S. Sedik, H. Talaat.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 1, pp. 28–35, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tag El-Din Kamal, M., Sedik, EW.S. & Talaat, H. Variation of the Intersection Point of the Potential Surface Crossing Induced by the Laser Phase Along the Reaction Path in Ion-Molecule Reactions: Application To Li+ + CH4. J Struct Chem 59, 20–27 (2018). https://doi.org/10.1134/S0022476618010043

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618010043

Keywords

Navigation