Skip to main content
Log in

Internal rotation and equilibrium structure of the 2-methyl-2-nitropropane molecule from joint processing of gas phase electron diffraction data, vibrational and microwave spectroscopy data, and quantum chemical calculation results

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure and internal rotation of the 2-methyl-2-nitropropane molecule is studied by electron diffraction and quantum chemical calculations with the use of microwave and vibrational spectroscopy data. The electron diffraction data are analyzed within the general intramolecular anharmonic force field model and the quantum chemical pseudoconformer model, considering the adiabatic separation of the degree of freedom of large amplitude motion, i.e., the internal rotation of the NO2 group. The equilibrium eclipsed configuration of the C s symmetry molecule has the following experimental bond lengths and valence angles: r e(N=O) = 1.226//1.226(8) Å, r e(C–N)//r e(C–C) = 1.520//1.515/1,521(4) Å, ∠еC–C–N = = 109.1/106,1(8)°, ∠еO=N=O = 124.2(6)°, ∠eC–C–Havg = 110(3)°. The equilibrium geometry parameters are well consistent with MP2/cc-pVTZ quantum chemical calculations and microwave spectroscopy data. The thermally average parameters previously obtained within the small vibration model show a satisfactory agreement with the new results. The electron diffraction data used in this work do not allow a reliable determination of the barrier to internal rotation. However, at a barrier of 203(2) cal/mol, which is derived from the microwave study, it follows from the electron diffraction data that the equilibrium configuration must correspond to an eclipsed arrangement of C–C and N=O bonds, which is also consistent with the results of quantum chemical calculations of various levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. F. Shishkov, N. I. Sadova, L. V. Vilkov, and Yu. A. Pankrushev, J. Struct. Chem., 24, No. 2, 189–195 (1983).

    Article  Google Scholar 

  2. P. R. R. Langridge-Smith, R. Stevens, and A. P. Cox, J. Chem. Soc., Faraday Trans. 2, 76, 330–338 (1980).

    Article  CAS  Google Scholar 

  3. I. V. Kochikov, D. M. Kovtun, and Y. I. Tarasov, Vychisl. Metody Program., Sect. 2, 9, No. 1, 12–18 (2008).

    Google Scholar 

  4. I. V. Kochikov, Yu. I. Tarasov, V. P. Spiridonov, G. M. Kuramshina, A. S. Saakjan, and A. G. Yagola, J. Mol. Struct., 550/551, 429–438 (2000).

    Article  Google Scholar 

  5. Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, N. Vogt, B. K. Novosadov, and A. S. Saakyan, J. Struct. Chem., 45, No. 5, 778–785 (2004).

    Article  CAS  Google Scholar 

  6. I. V. Kochikov, Yu. I. Tarasov, N. Vogt, and V. P. Spiridonov, J. Mol. Struct., 607, Nos. 2/3, 163–174 (2002).

    Article  CAS  Google Scholar 

  7. M. Dakkouri, I. V. Kochikov, Yu. I. Tarasov, N. Vogt, J. Vogt, and R. Bitschenauer, J. Mol. Struct., 607, Nos. 2/3, 195–206 (2002).

    Article  CAS  Google Scholar 

  8. I. V. Kochikov and Yu. I. Tarasov, Struct. Chem., 14, No. 2, 227–238 (2003).

    Article  CAS  Google Scholar 

  9. Yu. I. Tarasov, I. V. Kochikov, N. Vogt, A. V. Stepanova, D. M. Kovtun, A. A. Ivanov, A. N. Rykov, R. Z. Deyanov, B. K. Novosadov, and J. Vogt, J. Mol. Struct., 872, Nos. 2/3, 150–165 (2008).

    Article  CAS  Google Scholar 

  10. Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, and A. A. Ivanov, J. Mol. Struct., 921, Nos. 1–3, 255–263 (2009).

    Article  CAS  Google Scholar 

  11. D. M. Kovtun, I. V. Kochikov, and Y. I. Tarasov, J. Mol. Struct., 1100, 311–317 (2015).

    Article  CAS  Google Scholar 

  12. D. M. Kovtun, I. V. Kochikov, and Y. I. Tarasov, J. Phys. Chem. A, 119, No. 9, 1657–1665 (2015).

    Article  CAS  Google Scholar 

  13. L. S. Khaikin, I. V. Kochikov, D. S. Tikhonov, and O. E. Grikina, Russ. J. Phys. Chem. A, 89, No. 6, 1033–1040 (2015).

    Article  CAS  Google Scholar 

  14. I. V. Kochikov, D. M. Kovtun, and Y. I. Tarasov, J. Mol. Struct., 1132, 139–148 (2017).

    Article  CAS  Google Scholar 

  15. I. V. Kochikov, Yu. I. Tarasov, and A. A. Ivanov, J. Struct. Chem., 48, No. 3, 558–563 (2007).

    Article  CAS  Google Scholar 

  16. A. W. Ross, M. Fink, and R. Hildebrandt, in: International Tables for X-Ray Crystallography, A. J. C. Wilson (ed.), vol. C, Kluwer Academic Publishers, Dordrecht (1992), pp. 362–390.

    Google Scholar 

  17. J. R. Durig, Fengyi Sun, and Y. S. Li, J. Mol. Struct., 101, Nos. 1/2, 79–92 (1983).

    Article  CAS  Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA (2003).

    Google Scholar 

  19. S. Samdal, H. M. Seip, and T. Torgrimsen, J. Mol. Struct., 57, 105–121 (1979).

    Article  CAS  Google Scholar 

  20. I. V. Kochikov, Yu. I. Tarasov, V. P. Spiridonov, G. M. Kuramshina, A. G. Yagola, A. S. Saakjan, M. V. Popik, and S. Samdal, J. Mol. Struct., 485/486, 421–443 (1999).

    Article  Google Scholar 

  21. I. V. Kochikov, G. M. Kuramshina, A. V. Stepanova, and A. G. Yagola, Vestn. Mos. Univ., Ser. 3: Fiz., Astron., No. 5, 21–25 (1997).

    Google Scholar 

  22. Q. Shen, J. W. Brown, A. D. Richardson, and K. Hagen, J. Mol. Struct., 830, Nos. 1–3, 204–207 (2007).

    Article  CAS  Google Scholar 

  23. Q. Shen, J. W. Brown, J. A. Malona, J. C. Cochran, and A. D. Richardson, J. Phys. Chem. A, 110, 7491–7495 (2006).

    Article  CAS  Google Scholar 

  24. T. Helgaker, J. Gauss, P. Jørgensen, and J. Olsen, J. Chem. Phys., 106, No. 15, 6430–6440 (1997).

    Article  CAS  Google Scholar 

  25. S. Coriani, D. Marchesan, J. Gauss, C. Hättig, T. Helgaker, and P. Jørgensen, J. Chem. Phys., 123, No. 18, 184107 (2005).

    Article  Google Scholar 

  26. D. Cremer, E. Kraka, and Y. He, J. Mol. Struct., 567, 275–293 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Tarasov.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 3, pp. 525-534, March-April, 2017.

Original Russian Text © 2017 Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, E. A. Polenov, A. A. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, Y.I., Kochikov, I.V., Kovtun, D.M. et al. Internal rotation and equilibrium structure of the 2-methyl-2-nitropropane molecule from joint processing of gas phase electron diffraction data, vibrational and microwave spectroscopy data, and quantum chemical calculation results. J Struct Chem 58, 498–507 (2017). https://doi.org/10.1134/S0022476617030106

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617030106

Keywords

Navigation