Skip to main content
Log in

Crystal structure determination, and DFT Calculations of dichlorobis-(dimethylsulfoxide-O)copper(II)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of dichlorobis(dimethylsulfoxide-O)copper(II), [CuCl2(DMSO)2] (I), previously determined by Willett and Chang, is reinvestigated. It crystallizes in the orthorhombic system with the space group Pnma (N°62), Z = 4, and unit cell parameters a = 8.053(1) Å, b = 11.642(5) Å, c = 11.347(3) Å. Our structure determination is of a significantly higher precision in terms of bond lengths, angles, and R factors (e.g., Cu1–O1 = 1.9737(24) Å, O1–Cu1–O1i = 173.08(13)° (symmetry code: I x, 1/2–y, z) and R(F 2) = 0.046 compared to 1.955(4) Å, 173.0(3)° and R(F) = 0.075). In contrast to the previous investigation, all H atoms are placed at calculated positions. In the title molecule, the CuII atom is five coordinated in a distorted square pyramidal geometry. Thus, as reported previously, it can be shown that the crystal structure consists of [CuCl2(DMSO)2] molecules which, by virtue of long Cu–Cl interactions, are tied together to form chains parallel to the [100] direction. The density functional theory (DFT) optimized structure at the B3LYP/6-311++G(2d,2p) level is compared with the experimentally determined molecular structure. The HOMO-LUMO energy gap and other related molecular properties are also calculated. Comprehensive experimental and theoretical structural studies on the studied complex are carried out by FT-IR and UV-visible spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Cotton and R. Francis, J. Am. Chem. Soc., 82, 2986–2991 (1960).

    Article  CAS  Google Scholar 

  2. F. A. Cotton, R. Francis, and W. D. Horrocks, J. Phys. Chem., 64, 1534–1536 (1960).

    Article  CAS  Google Scholar 

  3. F. A. Cotton and R. Francis, J. Inorg. Nucl. Chem., 17, 62–68 (1961).

    Article  CAS  Google Scholar 

  4. D. W. Meek, D. K. Straub, and R. S. Drago, J. Am. Chem. Soc., 82, 6013–6016 (1960).

    Article  CAS  Google Scholar 

  5. R. S. Drago and D. W. Meek, J. Phys. Chem., 65, 1446 (1961).

    Article  CAS  Google Scholar 

  6. A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta Crystallogr., A24, 351–359 (1968).

    Article  Google Scholar 

  7. K. Harms and S. Wocadlo, XCAD4, University of Marburg, Germany (1995).

    Google Scholar 

  8. L. J. Farrugia, J. Appl. Crystallogr., 45, 849–854 (2012).

    Article  CAS  Google Scholar 

  9. G. M. Sheldrick, SHELXS-97, SHELXL-97, Acta Crystallogr., A64, 112–122 (2008).

    Article  Google Scholar 

  10. K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany (2001).

    Google Scholar 

  11. P. Hohenberg and W. Kohn, Phys. Rev., B136, 864 (1964).

    Article  Google Scholar 

  12. W. Kohn, Phys. Rev., 133, 171–181 (1964).

    Article  Google Scholar 

  13. A. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  14. C. Lee, W. Yang, and R. Parr, Phys. Rev., B37, 785–789 (1988).

    Article  Google Scholar 

  15. C. W. Bauschlicher and H. Partridge, Chem. Phys. Lett., 240, 533–540 (1995).

    Article  CAS  Google Scholar 

  16. M. J. Frisch et al., GAUSSIAN09. Revision A.01, Gaussian Inc., Wallingford, CT, USA (2009).

    Google Scholar 

  17. R. D. Dennington, T. A. Keith, and J. M. Millam, GaussView 5.0.8, Gaussian Inc. (2008).

    Google Scholar 

  18. H. Gokce and S. Bahceli, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 116, 242–250 (2013).

    Article  CAS  Google Scholar 

  19. N. Sundaraganesan, B. D. Joshua, and K. Settu, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 66, 381–388 (2007).

    Article  CAS  Google Scholar 

  20. S. Adams, SoftBV program, University of Göttingen, Germany (2003); http: // kristall.unimki.dwdg.de/softBV.

    Google Scholar 

  21. B. Smith, Infrared Spectral, a Systematic Approach, CRC Press, Washington, DC (1999).

    Google Scholar 

  22. M. Gussoni and C. O. Castiglioni, J. Mol. Struct., 521, 1–8 (2000).

    Article  CAS  Google Scholar 

  23. P. S. Kalsi, Spectroscopy of Organic Compounds, New Age International (P) (2009).

    Google Scholar 

  24. L. S. Mohammed, I. S. Hamza, F. R. Muhi AL-Deen, and B. R. J. Muhyedeen, J. Appl. Chem., 3, No. 5, 2102–2121 (2014).

    CAS  Google Scholar 

  25. B. Kosar and C. Albayrak, Spectrochim. Acta, 78A, 160–167 (2011).

    Article  CAS  Google Scholar 

  26. B. J. Powell, T. Baruah, N. Bernstein, K. Brake, R. H. McKenzie, P. Meredith, and M. R. Pederson, J. Chem. Phys., 12, 8608–8615 (2004).

    Article  Google Scholar 

  27. R. Parr, L. Szentpaly, and S. Liu, Am. Chem. Soc., 121, 1922–1924 (1999).

    Article  CAS  Google Scholar 

  28. P. Chattraj, B. Maiti, and U. Sarkar, J. Phys. Chem., A107, 4973–4975 (2003).

    Article  Google Scholar 

  29. T. A. Koopmans, Physica, 1, 104–113 (1934).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chebbi.

Additional information

Original Russian Text © 2016 H. Chebbi, M. Chebbi, A. Guesmi, Y. Arfaoui.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 57, No. 6, pp. 1164-1170, July-August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebbi, H., Chebbi, M., Guesmi, A. et al. Crystal structure determination, and DFT Calculations of dichlorobis-(dimethylsulfoxide-O)copper(II). J Struct Chem 57, 1104–1110 (2016). https://doi.org/10.1134/S002247661606007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661606007X

Keywords

Navigation