Skip to main content
Log in

X-ray photoelectron study of the effect of the composition of the initial gas phase on changes in the electronic structure of hexagonal boron nitride films obtained by PECVD from borazine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride films are synthesized by plasma enhanced chemical vapor deposition (PECVD) from a gas mixture of borazine and ammonia or helium on Si(100) substrates. X-ray photoelectron spectroscopy is used to study changes in the electronic structure and chemical composition of the films depending on the composition of the initial gas mixture. It is found that the chemical composition of the samples depends on the gas used. The use of helium results in an excess of boron atoms on the film surface, the appearance of B–B bonds, and a decrease in the contribution of B–N bonds in the hexagonal structure. The preparation of h-BN films close to the stoichiometric composition by PECVD methods with the use of borazine is shown to be possible with the addition of ammonia. Based on the literature data, the binding energies in the B 1s XPS spectra are calculated for different boron environments in the hexagonal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pakdel, Y. Bando, and D. Golberg, Chem. Soc. Rev., 43, No. 3, 934 (2014).

    Article  CAS  Google Scholar 

  2. X. Jiang, Q. Weng, X. Wang, et al., J. Mater. Sci. Technol., 31, No. 6, 589 (2015).

    Article  Google Scholar 

  3. Y. Lin and J. W. Connell, Nanoscale, 4, No. 22, 6908 (2012).

    Article  CAS  Google Scholar 

  4. L. Song, L. Ci, H. Lu, et al., Nano Lett., 10, No. 8, 3209 (2010).

    Article  CAS  Google Scholar 

  5. Y. Lei, Y. Wang, Y. Song, et al., Mater. Lett., 65, No. 2, 157 (2011).

    Article  CAS  Google Scholar 

  6. B. Zhong, X. Huang, G. Wen, et al., Nanoscale Res. Lett., 6, No. 1, 36 (2010).

    Google Scholar 

  7. A. Pakdel, C. Zhi, Y. Bando, et al., Nanotechnology, 23, No. 21, 215601 (2012).

    Article  Google Scholar 

  8. C. Zhang, X. Hao, Y. Wu, et al., Mater. Res. Bull., 47, No. 9, 2277 (2012).

    Article  CAS  Google Scholar 

  9. J. Yu, L. Qin, Y. Hao, et al., ACS Nano, 4, No. 1, 414 (2010).

    Article  CAS  Google Scholar 

  10. A. Pakdel, X. Wang, C. Zhi, et al., J. Mater. Chem., 22, No. 11, 4818 (2012).

    Article  CAS  Google Scholar 

  11. B. BenMoussa, J. D’Haen, C. Borschel, et al., J. Phys. D: Appl. Phys., 45, No. 13, 135302 (2012).

    Article  Google Scholar 

  12. J. Li, C. Zhang, B. Li, et al., Surf. Coat. Technol., 205, No. 12, 3736 (2011).

    Article  CAS  Google Scholar 

  13. A. Gibb, N. Alem, and A. Zettl, Phys. Status Solidi, 250, No. 12, 2727 (2013).

    Article  CAS  Google Scholar 

  14. S. V. Nguyen, J. Electrochem. Soc., 141, No. 6, 1633 (1994).

    Article  CAS  Google Scholar 

  15. A. N. Korshunov, M. L. Kosinova, E. G. Salman, et al., Phys. Status Solidi, 133, K57 (1992).

    Article  CAS  Google Scholar 

  16. J. Kouvetakis, J. Vac. Sci. Technol., A, 8, No. 6, 3929 (1990).

  17. F. A. Kuznetsov, M. G. Voronkov, V. O. Borisov, I. K. Igumenov, V. V. Kaichev, V. G. Kesler, V. V. Kirienko, V. N. Kachai, M. L. Kosinova, V. V. Kriventsov, M. S. Lebedev, A. V. Lis, N. B. Morozova, L. D. Nikulina, V. I. Rakhlin, Yu. M. Rumyantsev, T. P. Smirnova, V. S. Sulyaeva, S. V. Sysoev, A. A. Titov, N. I. Fainer, I. P. Tsyrendorzhieva, L. I. Chernyaevskii, and L. V. Yakovkina, Fundamental Principles of Chemical Deposition Processes of Films and Structures for Nanoelectronics [in Russian], T. P. Smirnova (ed.), Izd. SO RAN, Novosibirsk (2013).

  18. I. S. Merenkov, M. L. Kosinova, E. N. Ermakova, et al., Neorg. Mater., 51, No. 11, 1183 (2015).

    Article  Google Scholar 

  19. M. N. Uddin, I. Shimoyama, Y. Baba, et al., J. Vac. Sci. Technol., A, 23, No. 3, 497 (2005).

    Article  CAS  Google Scholar 

  20. U. Gelius, P. F. Hedén, J. Hedman, et al., Phys. Scr., 2, Nos. 1/2, 70 (1970).

    Article  CAS  Google Scholar 

  21. W. L. Jolly, J. Am. Chem. Soc., 92, No. 11, 3260 (1970).

    Article  CAS  Google Scholar 

  22. D. J. Joyner and D. M. Hercules, J. Chem. Phys., 72, No. 2, 1095 (1980).

  23. Y. Wang, J. Fan, and M. Trenary, Chem. Mater., No. 15, 192 (1993).

    Article  CAS  Google Scholar 

  24. Y. Wang and M. Trenary, Chem. Mater., No. 364, 605 (1993).

    Google Scholar 

  25. D. N. Hendrickson, J. M. Hollander, and W. L. Jolly, Inorg. Chem., 9, No. 3, 612 (1970).

    Article  CAS  Google Scholar 

  26. P. Widmayer, H.-G. Boyen, P. Ziemann, et al., Phys. Rev. B, 59, No. 7, 5233 (1999).

    Article  CAS  Google Scholar 

  27. B. E. Zaitsev, Z. V. Bezuglaya, G. V. Avramenko, T. M. Ivanova, and V. N. Lisitenko, Zh. Org. Khim., No. 6, 1398 (1985).

    Google Scholar 

  28. M. N. Uddin, I. Shimoyama, Y. Baba, et al., Appl. Surf. Sci., 241, Nos. 1/2, 246 (2005).

    Article  CAS  Google Scholar 

  29. W. C. Foo, J. S. Ozcomert, and M. Trenary, Surf. Sci., 255, 245 (1991).

    Article  CAS  Google Scholar 

  30. C. W. Ong, H. Huang, B. Zheng, et al., J. Appl. Phys., 95, No. 7, 3527 (2004).

    Article  CAS  Google Scholar 

  31. L. Liu, Y. Wang, K. Feng, et al., Appl. Surf. Sci., 252, No. 12, 4185 (2006).

    Article  CAS  Google Scholar 

  32. Y. Wada, Y. Yap, M. Yoshimura, et al., Diamond Relat. Mater., 9, Nos. 3-6, 620 (2000).

    Article  CAS  Google Scholar 

  33. F. Zhou, K. Adachi, and K. Kato, Wear, 261, Nos. 3/ 4, 301 (2006).

    Article  Google Scholar 

  34. J.-K. Jeon, Y. Uchimaru, and D.-P. Kim, Inorg. Chem., 43, No. 16, 4796 (2004).

    Article  CAS  Google Scholar 

  35. S. Y. Kim, J. Park, H. C. Choi, et al., J. Am. Chem. Soc., 129, No. 6, 1705 (2007).

    Article  CAS  Google Scholar 

  36. G. Soucy, J. W. Jurewicz, and M. I. Boulos, Plasma Chem. Plasma Process., 15, No. 4, 693 (1995).

    Article  CAS  Google Scholar 

  37. Z. Zhang, C. Kimura, and T. Sugino, J. Appl. Phys., 98, No. 3, 036105 (2005).

  38. C. Guimon, D. Gonbeau, G. Pfister-Guillouzo, et al., Surf. Interface Anal., 16, Nos. 1- 12, 440 (1990).

    Article  Google Scholar 

  39. O. Olivares, N. V. Likhanova, B. Gómez, et al., Appl. Surf. Sci., 252, No. 8, 2894 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Merenkov.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 4, pp. 709-716, May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’inchik, E.A., Merenkov, I.S. X-ray photoelectron study of the effect of the composition of the initial gas phase on changes in the electronic structure of hexagonal boron nitride films obtained by PECVD from borazine. J Struct Chem 57, 670–678 (2016). https://doi.org/10.1134/S0022476616040065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616040065

Keywords

Navigation