Skip to main content
Log in

Geometries, stabilities, electronic and magnetic properties of small aluminum cluster anions doped with cobalt: A density functional theory study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometrical structures, relative electronic and magnetic properties of small Al n Co (1 ≤ n ≤ 9) clusters are systematically investigated within the framework of density functional theory at the BPW91 level. The single Co doping can dramatically affect the ground state geometries of the 1 Al - n+1 clusters. At the same time, the resulting geometries show that the lowest energy Al n Co clusters prefer to be three dimensional structures. Here, the relative stabilities are investigated in terms of the calculated average binding energies, fragmentation energies, and second-order energy differences. Moreover, the result of the highest occupiedlowest unoccupied molecular orbital energy gaps indicates that Al6Co clusters have the highest chemical stability for Al n Co (1 ≤ n ≤ 9) clusters. Furthermore, the natural population analysis reveals that the charges in Al n Co clusters transfer from the Al frames to the Co atom. Additionally, the analyses of the local and total magnetic moments of the Al n Co clusters show that the magnetic effect mainly comes from the Co atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Q. Wang, X. Y. Kuang, and H. F. Li, Phys. Chem. Chem. Phys., 12, 5156 (2010).

    Article  CAS  Google Scholar 

  2. H. F. Li, X. Y. Kuang, and H. Q. Wang, Phys. Lett. A, 375, 2836 (2011).

    Article  CAS  Google Scholar 

  3. P. G. Reinhard and E. Suraud, Introduction to Cluster Dynamics, Wiley-VCH, Weinheim (2004).

    Google Scholar 

  4. F. Baletto and R. Ferrando, Rev. Mod. Phys., 77, 371 (2005).

    Article  CAS  Google Scholar 

  5. M. B. Knickelbein, Phys. Rev. Lett., 86, 5255 (2001).

    Article  CAS  Google Scholar 

  6. X. G. Gong and V. Kumar, Phys. Rev. B, 50, 17701 (1994).

    Article  CAS  Google Scholar 

  7. X. Li and L. S. Wang, Phys. Rev. B, 65, 153404–1 (2002).

    Article  Google Scholar 

  8. B. D. Leskiw and A. W. Castleman, Chem. Phys. Lett., 316, 31 (2000).

    Article  CAS  Google Scholar 

  9. B. Kiran, X. Li, A. Grubisic, G. F. Gantefor, K. H. Bowen, R. Buurgert, and H. Schnockel, Phys. Rev. Lett., 98, 256802 (2007).

    Article  CAS  Google Scholar 

  10. B. K. Rao and P. Jena, J. Chem. Phys., 111, 1890 (1999).

    Article  CAS  Google Scholar 

  11. A. O. Orlov, I. Amlani, and G. H. Bernstein, Science, 277, 928 (1997).

    Article  CAS  Google Scholar 

  12. M. Valden, X. Lai, and D. W. Goodman, Science, 281, 1647 (1998).

    Article  CAS  Google Scholar 

  13. R. O. Jones, Phys. Rev. Lett., 67, 224 (1991).

    Article  CAS  Google Scholar 

  14. R. O. Jones, J. Chem. Phys., 99, 1194 (1993).

  15. S. H. Yang and D. A. Drabold, Phys. Rev. B, 47, 1567 (1993).

    Article  CAS  Google Scholar 

  16. B. K. Rao and P. Jena, J. Chem. Phys., 111, 1890 (1999).

    Article  CAS  Google Scholar 

  17. D. E. Bergeron and A. W. Castleman, Science, 304, 84 (2004).

    Article  CAS  Google Scholar 

  18. a)_C. J. Bauschlicher and H. Partridge, J. Chem. Phys., 86, 7007 (1987)

    Article  CAS  Google Scholar 

  19. C. J. Bauschlicher and L. A. Barnes, J. Phys. Chem., 93, 2932 (1989).

    Article  CAS  Google Scholar 

  20. A. N. Marti and A. Vela, Phys. Rev. B, 49, 17464 (1994).

    Article  Google Scholar 

  21. A. N. Marti, A. Vela, and D. R. Salahub, J. Quantum Chem., 63, 301 (1997).

    Article  Google Scholar 

  22. C. Y. Cha, G. Gantefr, and W. Eberhardt, J. Chem. Phys., 100, 995 (1994).

    Article  CAS  Google Scholar 

  23. R. L. Hettich, J. Am. Chem. Soc., 111, 8582 (1989).

    Article  CAS  Google Scholar 

  24. L. Hanley, S. Ruatta, and S. Anderson, J. Chem. Phys., 87, 260 (1987).

    Article  CAS  Google Scholar 

  25. M. F. Jarrold, J. E. Bower, and J. S. Kraus, J. Chem. Phys., 86, 3876 (1987).

    Article  CAS  Google Scholar 

  26. K. J. Taylor and C. L. Pettiett, Chem. Phys. Lett., 152, 347 (1988).

    Article  CAS  Google Scholar 

  27. X. Li, H. B. Wu, X. B. Wang, and L. S. Wang, Phys. Rev. Lett., 81, 1909 (1998).

    Article  CAS  Google Scholar 

  28. W. D. Knight, Phys. Rev. Lett., 52, 2141 (1984).

    Article  CAS  Google Scholar 

  29. M. Y. Chou and M. L. Cohen, Phys. Lett. A, 113, 420 (1986).

    Article  Google Scholar 

  30. B. V. Reddy, S. N. Khanna, and S. C. Deevi, Chem. Phys. Lett., 333, 465 (2001).

    Article  CAS  Google Scholar 

  31. C. T. Owen, W. J. Zheng, and K. Bowen Jr., J. Chem. Phys., 114, 5514 (2001).

    Article  Google Scholar 

  32. S. N. Khanna, C. Ashman, B. K. Rao, and P. Jena, J. Chem. Phys., 114, 9792 (2001).

    Article  CAS  Google Scholar 

  33. X. G. Gong and V. Kumar, Phys. Rev. Lett., 70, 2078 (1993).

    Article  CAS  Google Scholar 

  34. M. S. Bailey and N. T. Wilson, Eur. Phys. J. D, 25, 41 (2003).

    Article  CAS  Google Scholar 

  35. J. Lv, F. Q. Zhang, J. F. Jia, X. H. Xu, and H. S. Wu, J. Mol. Struct.: THEOCHEM, 955, 14 (2010).

    Article  CAS  Google Scholar 

  36. M. Wang, X. Y. Huang, Z. L. Du, and Y. C. Li, Chem. Phys. Lett., 480, 258 (2009).

    Article  CAS  Google Scholar 

  37. D. H. Lim, A. S. Negreira, and J. Wilcox, J. Phys. Chem. C, 115, 8961 (2011).

    Article  CAS  Google Scholar 

  38. S. Nonose, Y. Sone, K. Onodera, S. Sudo, and K. Kaya, Chem. Phys. Lett., 164, 427 (1989).

    Article  CAS  Google Scholar 

  39. W. J. C. Menezes and M. B. Knickelbein, Chem. Phys. Lett., 183, 357 (1991).

    Article  CAS  Google Scholar 

  40. W. J. C. Menezes and M. B. Knickelbein, Z. Phys. D: At., Mol. Clusters, 26, 322 (1993).

    Article  CAS  Google Scholar 

  41. J. M. Behm, D. J. Brugh, and M. D. Morse, J. Chem. Phys., 101, 6487 (1994).

    Article  Google Scholar 

  42. X. Kung, X. Wang, and G. Liu, J. Struct. Chem., 52, 675 (2011).

    Article  Google Scholar 

  43. A. V. Kozinkin, V. G. Vlasenko, O. V. Kulikova, O. V. Shvachko, Yu. A. Kozinkin, L. L. Vysochina, V. E. Guterman, and Ya. V. Zubavichus, J. Struct. Chem., 52, 76 (2011).

    Article  CAS  Google Scholar 

  44. G. Ma and L. Guo, J. Struct. Chem., 53, 39 (2012).

    Article  CAS  Google Scholar 

  45. A. Pramann, A. Nakajima, and K. Kata, J.Chem. Phys., 115, 5404 (2001).

    Article  CAS  Google Scholar 

  46. L. Guo, J. Alloys Compd., 466, 463 (2008).

    Article  CAS  Google Scholar 

  47. A. D. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  CAS  Google Scholar 

  48. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).

    Article  Google Scholar 

  49. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, Molecular Spectra, Molecular Structure, vol. 4, Van Nostrand Rienhold, New York (1979).

    Book  Google Scholar 

  50. A. Kant and B. Strauss, J. Chem. Phys., 41, 3806 (1964).

    Article  CAS  Google Scholar 

  51. D. A. Hales, C. X. Su, and P. B. Armenttrout, J. Chem. Phys., 100, 1049 (1994).

    Article  CAS  Google Scholar 

  52. Q. M. Ma, Z. Xie, J. Wang, Y. Liu, and Y. C. Li, Phys. Lett. A, 358, 289 (2006).

    Article  CAS  Google Scholar 

  53. J. Sun, W. K. Lu, H. Wang, Z. S. Li, and C. C. Sun, J. Phys. Chem. A, 110, 2729 (2006).

    Article  CAS  Google Scholar 

  54. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 735 (1985).

    Article  CAS  Google Scholar 

  55. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-Y. Zhang.

Additional information

Original Russian Text © 2016 L. Zhang, C.-Y. Zhang, X.-H. Song, B.-Q. Wang, J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, CY., Song, XH. et al. Geometries, stabilities, electronic and magnetic properties of small aluminum cluster anions doped with cobalt: A density functional theory study. J Struct Chem 57, 33–46 (2016). https://doi.org/10.1134/S0022476616010054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616010054

Keywords

Navigation