Skip to main content
Log in

Crystal structures and characterization of two rare-earth-glutarate coordination networks: One-dimensional [Nd(C5H6O4)(H2O)4]•Cl and three-dimensional [Pr(C5H6O4)(C5H7O4)(H2O)]•H2O

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The synthesis, crystal structures, and characterization (IR, TGA/DSC) of [Nd(C5H6O4)(H2O)4]•Cl (1) and [Pr(C5H6O4)(C5H7O4)(H2O)]•H2O (2) are described. Compound 1 is a one-dimensional coordination polymer containing double chains incorporating pairs of edge-sharing NdO9 polyhedra linked by glutarate dianions. A network of O–H…O and O–H…Cl hydrogen bonds helps to consolidate the structure. Compound 2 is a three-dimensional coordination polymer incorporating chains of edge-sharing PrO10 polyhedra. Its glutarate ion adopts an extended conformation, whereas its hydrogen glutarate ion takes on a twisted conformation. O–H…O hydrogen bonds are seen in the crystal structure, which features small channels occupied by water molecules. Crystal data: 1, C5H14ClNdO8, M r = 381.85, monoclinic, P21/c (No. 14), a = 8.9763(6) Å, b = 15.9277(11) Å, c = 8.8690(6) Å, β = 112.090(2)°, V = 1174.94(14) Å3, Z = 4, R(F) = 0.016, wR(F 2) = 0.037. 2, C10H17O10Pr, M r = 438.15, orthorhombic, Pbca (No. 61), a = 16.3030(7) Å, b = 8.6714(4) Å, c = 19.3899(8) Å, V = 2741.1(2) Å3, Z = 8, R(F) = 0.020, wR(F 2) = 0.050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. C. Wyatt, J. Appl. Polym. Sci., 126, 1784–1793 (2012).

    Article  CAS  Google Scholar 

  2. A. G. Gopunath, T. Chitravel, C. Kavitha, N. P. S. Prabu, and M. L. N. M. Mohan. Molec. Cryst. Liq. Cryst., 574, 19–32 (2013).

    Article  CAS  Google Scholar 

  3. L. Gou, Z. X. Han, H. M. Hu, Q. R. Wu, X. L. Yang, Z. H. Yang, B. C. Wang, F. Wang, M. L. Yang, and G. L. Xue, Inorg. Chim. Acta, 363, 2590–2599 (2010).

    Article  CAS  Google Scholar 

  4. T. Duangthongyou, C. Phakawatchai, and S. Siripaisarnpipat, J. Mol. Struct., 987, 101–105 (2011).

    Article  CAS  Google Scholar 

  5. Y. Q. Zhen, H. L. Zhu, X. X. Guo, and J. Y. Liu, Solid State Sci., 18, 42–49 (2013).

    Article  Google Scholar 

  6. N. Rahahalia, B. Benmerad, A. Guehria-Laidouadi, S. Dahaoui, and C. Lecomte, Acta Crystallogr., E62, m2147 (2006).

    Google Scholar 

  7. Z. Wang, F. Y. Bai, Y. H. Xing, Y. Xie, X. Q. Zeng, M. F. Ge, and S. Y. Niu, J. Inorg. Organomet. Polym. Mater., 20, 242–249 (2010).

    Article  CAS  Google Scholar 

  8. C. G. Wang, Y. H. Xing, Z. P. Li, J. Li, X. Q. Zeng, M. F. Ge, and S. Y. Niu, J. Mol. Struct., 931, 76–81 (2009).

    Article  CAS  Google Scholar 

  9. G. M. Sheldrick, SADABS, University of Gottingen, Germany (2007).

  10. G. M. Sheldrick, Acta Crystallogr., A64, 112–122 (2008).

    Article  Google Scholar 

  11. L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).

    Article  CAS  Google Scholar 

  12. ATOMS for Windows, Version 6.3, Shape Software Inc., Kingsport, Tennessee, USA.

  13. R. W. Cheyne, T. A. D. Smith, L. Trembleau, and A. C. Mclaughlin, Nanoscale Res. Lett., 6, 423 (2011); doi 10.1186/1556-276X-6-423.

    Article  Google Scholar 

  14. G. S. Singh and T. Pheko, Spectrochim. Acta, A70, 595–600 (2008).

    Article  Google Scholar 

  15. I. D. Brown and D. Altermatt, Acta. Crystallogr., B41, 244–247 (1985).

    Article  CAS  Google Scholar 

  16. W. Y. Yin, X. Y. Tang, J. Yang, Y. S. Ma, and R. X. Yuan, J. Coord. Chem., 63, 1157–1164 (2010).

    Article  CAS  Google Scholar 

  17. F. H. Allen and W. D. S. Motherwell, Acta Crystallogr., B58, 407–422 (2002).

    Article  CAS  Google Scholar 

  18. Y. Q. Yang, C. H. Li, W. Li, and Z. J. Yi, Chin. J. Chem., 28, 1385–1388 (2010).

    Article  CAS  Google Scholar 

  19. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1–S19 (1987).

    Article  Google Scholar 

  20. J. Legendziewicz, B. Keller, I. Turowska-Tyrk, and W. Wojciechowski, New J. Chem., 23, 1097–1103 (1999)

    Article  CAS  Google Scholar 

  21. R. E. Marsh, Acta Crystallogr., B61, 359 (2005).

    Article  CAS  Google Scholar 

  22. B. Benmerad, A. Guehria-Laidoudi, F. Balegroune, H. Birkedal, and G. Chapuis, Acta Crystallogr., C56, 789–792 (2000).

    Google Scholar 

  23. J. Z. Gu, J. Wu, D. Y. Lv, Y. Tang, K. Zhu, and J. Wu, Dalton Trans., 4822–4830 (2013).

    Google Scholar 

  24. B. Rather and M. J. Zaworotko, Chem. Commun., 830/831 (2003).

  25. C. Bromant, W. Nika, I. Pantenburg, and G. Meyer, Zeit. Anorg. Allg. Chem., 631, 2416–2422 (2005).

    Article  CAS  Google Scholar 

  26. D.-X. Hu, F. Luo, Y.-X. Che, and J.-M. Zheng, Cryst. Growth Des., 7, 1733–1737 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Hussain or W. T. A. Harrison.

Additional information

Original Russian Text © 2015 S. Hussain, I. U. Khan, W. T. A. Harrison, M. N. Tahir.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 5, pp. 993–1000, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Khan, I.U., Harrison, W.T.A. et al. Crystal structures and characterization of two rare-earth-glutarate coordination networks: One-dimensional [Nd(C5H6O4)(H2O)4]•Cl and three-dimensional [Pr(C5H6O4)(C5H7O4)(H2O)]•H2O. J Struct Chem 56, 934–941 (2015). https://doi.org/10.1134/S0022476615050169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615050169

Keywords

Navigation