Skip to main content
Log in

Protein Fractions of Natural Killer Cell Lysates Affect the Phenotype, Proliferation and Migration of Endothelial Cells in vitro

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Each stage of angiogenesis depends on the nature of the communication between endothelial cells and the microenvironment, and on the complex balance between stimulators and inhibitors of this process. Natural killer cells secrete a variety of cytokines and chemokines that can influence the microenvironment. The aim of this study was to assess the effect of protein fractions of an NK-92 natural killer cell lysate on the phenotype, proliferation and migration of the EA.hy926 endothelial cell line in an in vitro experimental model. We have shown that CD54 (ICAM-1) receptor expression by EA.hy926 cells after co-cultivation with 10–50 kDa and 30–80 kDa fractions was elevated in comparison with non-activated cells. The relative number of EA.hy926 cells with the CD54+ phenotype also increased after co-cultivation with the above fractions. The other remaining fractions (<20 kDa) had no effect on the expression of CD54, CD34, CD119 (IFNγR1) and CD31 (PECAM-1) receptors and the relative number of EA.hy926 cells. Proliferation and migration of EA.hy926 cells after co-cultivation with the fractions altered in opposite directions and concentration-dependently or remained unchanged. The residual area not occupied by migrated EA.hy926 cells after co-cultivation with the fractions did not always correlate with the intensity of migration and was not inversely proportional to the number of the migrated cells. Light fractions (<10 kDa) had no effect on the proliferation and migration of EA.hy926 cells. Using the MALDI-TOF mass spectrometric analysis, more than 1200 entries of proteins with a variety of functions were identified in the NK-92 natural killer cell lysate. Among those linked to natural killer cell functions are proteins related to signal transduction, cell skeleton, cell metabolism, cell proliferation/adhesion, immune response, and enzymes. Chemokines, cytokines, growth factors, semaphorins, defensins, collectin, ficolin, galectin-3, interferon β, TGFβ, VEGF, TNF ligands, and regulators of apoptosis could be specific agents responsible for the effects of the protein fractions seen on the target cells. These findings may indicate an alternative involvement of natural killer cell effector proteins in their communication with endothelial cells. The model used may also reflect the effect of the intracellular content of natural killer cells on the endothelium in case of their death by necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Blois SM, Klapp BF, Barrientos G (2011) Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 88: 86–92. https://doi.org/10.1016/j.jri.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  2. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12: 1065–1074. https://doi.org/10.1038/nm1452

    Article  CAS  PubMed  Google Scholar 

  3. Ashton SV, Whitley GS, Dash PR, Wareing M, Crocker IP, Baker PN, Cartwright JE (2005) Uterine spiral artery remodeling involves endothelial apoptosis induced by extravillous trophoblasts through Fas/FasL interactions. Arterioscler Thromb Vasc Biol 25: 102–108. https://doi.org/10.1161/01.ATV.0000148547.70187.89

    Article  CAS  PubMed  Google Scholar 

  4. Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, Aplin JD, Baker PN, Robso SC, Bulmer JN (2012) Uterine natural killer cells initiate spiral artery remodel-ing in human pregnancy. FASEB J 26: 4876–4885. https://doi.org/10.1096/fj.12-210310

    Article  CAS  PubMed  Google Scholar 

  5. Kalkunte SS, Mselle TF, Norris WE, Wira CR, Sentman CL, Sharma S (2009) Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol 182: 4085–4092. https://doi.org/10.4049/jimmunol.0803769

    Article  CAS  PubMed  Google Scholar 

  6. Dondero A, Casu B, Bellora F, Vacca A, De Luisi A, Frassanito MA, Cantoni C, Gaggero S, Olive D, Moretta A, Bottino C, Castriconi R (2017) NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget 8: 35088–35102. https://doi.org/10.18632/oncotarget.17070

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leonard S, Murrant C, Tayade C, van den Heuvel M, Watering R, Croy BA (2006) Mechanisms regulating immune cell contributions to spiral artery modification—facts and hypotheses—a review. Placenta 27: S40–S46. https://doi.org/10.1016/j.placenta.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  8. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, Katz G, Haimov-Kochman R, Fujii N, Yagel S, Peled A, Mandelboim O (2003) CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 102: 1569–1577. https://doi.org/10.1182/blood-2003-02-0517

    Article  CAS  PubMed  Google Scholar 

  9. Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G (1999) Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 93: 1612–1621. https://www.ncbi.nlm.nih.gov/pubmed/10029590

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Z, Zhang C, Zhang J, Tian Z (2012) Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1. PLoS ONE 7: e36928. https://doi.org/10.1371/journal.pone.0036928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Li X, Zhu Y, Li L, Wu Y, Ying J, Li Y, Chen J (2022) Human trophoblast cell-derived extracellular vesicles facilitate preeclampsia by transmitting miR-1273d, miR-4492, and miR-4417 to target HLA-G. Reprod Sci 29: 2685–2696. https://doi.org/10.1007/s43032-022-00939-6

    Article  CAS  PubMed  Google Scholar 

  12. Du M, Wang W, Huang L, Guan X, Lin W, Yao J, Li L (2022) Natural killer cells in the pathogenesis of preeclampsia: a double-edged sword. J Matern Fetal Neonatal Med 35: 1028–1035. https://doi.org/10.1080/14767058.2020.1740675

    Article  CAS  PubMed  Google Scholar 

  13. Ailamazyan EK, Stepanova OI, Selkov SA, Sokolov DI (2013) Cells of immune system of mother аnd trophoblast cells: constructive cooperation for the sake of achievement of the joint purpose. Ann Russ Acad Med Sci 68: 12–21. https://doi.org/10.15690/vramn.v68i11.837

    Article  Google Scholar 

  14. Tyshchuk EV, Mikhailova VA, Selkov SA, Sokolov DI (2021) Natural killer cells: origin, phenotype, function. Med Immunol (Russ) 23: 1207–1228. https://doi.org/10.15789/1563-0625-NKC-2330

  15. Sokolov DI, Selkov SA (2012) Immunological Control of the Establishment of Placental Vasculature. N-L, St. Petersburg. (In Russ.)

    Google Scholar 

  16. Than NG (2012) PP13, decidual zones of necrosis, and spiral artery remodeling—preeclampsia revisited? Reprod Sci 19: 14–15. https://doi.org/10.1177/1933719111431678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43: 582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  18. Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8: 652–658. https://www.ncbi.nlm.nih.gov/pubmed/8152260

    CAS  PubMed  Google Scholar 

  19. Thornhill MH, Li J, Haskard DO (1993) Leucocyte endothelial cell adhesion: a study comparing human umbilical vein endothelial cells and the endothelial cell line EA-hy-926. Scand J Immunol 38: 279–286. https://doi.org/10.1111/j.1365-3083.1993.tb01726.x

    Article  CAS  PubMed  Google Scholar 

  20. Markova KL, Mikhailova VA, Korenevsky AV, Milyutina YP, Rodygina VV, Aleksandrova EP, Markov AS, Balabas OA, Selkov SA, Sokolov DI (2020) Microvesicles produced by natural killer cells of the NK-92 cell line affect the phenotype and functions of endothelial cells of the EA.Hy926 cell line. Med Immunol (Russ) 22: 249–268. https://doi.org/10.15789/1563-0625-MPB-1877

  21. Sokolov DI, Markova KL, Mikhailova VA, Vyazmina LP, Milyutina YP, Kozyreva AR, Zhdanova AA, Malygina DA, Onokhin KV, Ivanova AN, Korenevsky AV, Selkov SA (2019) Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Med Immunol (Russ) 21: 669–688. https://doi.org/10.15789/1563-0625-2019-4-669-688

  22. Reinisch W, Hung K, Hassan-Zahraee M, Cataldi F (2018) Targeting endothelial ligands: ICAM-1/alicaforsen, MAdCAM-1. J Crohn’s Colitis 12: S669–S677. https://doi.org/10.1093/ecco-jcc/jjy059

    Article  Google Scholar 

  23. Renkonen R, Mattila P, Majuri ML, Paavonen T, Silvennoinen O (1992) IL-4 decreases IFN-gamma-induced endothelial ICAM-1 expression by a transcriptional mechanism. Scand J Immunol 35: 525–530. https://doi.org/10.1111/j.1365-3083.1992.tb03251.x

    Article  CAS  PubMed  Google Scholar 

  24. Sponza S, De Andrea M, Mondini M, Gugliesi F, Gariglio M, Landolfo S (2009) Role of the interferon-inducible IFI16 gene in the induction of ICAM-1 by TNF-alpha. Cell Immunol 257: 55–60. https://doi.org/10.1016/j.cellimm.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Doerschuk CM (2001) The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol 166: 6877–6884. https://doi.org/10.4049/jimmunol.166.11.6877

    Article  CAS  PubMed  Google Scholar 

  26. Hawke LG, Whitford MKM, Ormiston ML (2020) The production of pro-angiogenic VEGF-A isoforms by hypoxic human NK cells is independent of their TGF-β-mediated conversion to an ILC1-like phenotype. Front Immunol 11: 1903. https://doi.org/10.3389/fimmu.2020.01903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clark SE, Burrack KS, Jameson SC, Hamilton SE, Lenz LL (2019) NK cell IL-10 production requires IL-15 and IL-10 driven STAT3 activation. Front Immunol 10: 2087. https://doi.org/10.3389/fimmu.2019.02087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang Y, Yang M, Sun X, Chen X, Ma M, Yin X, Qian S, Zhang Z, Fu Y, Liu J, Han X, Hu J, Shang H (2018) IL-10+ NK and TGF-β+ NK cells play negative regulatory roles in HIV infection. BMC Infect Dis 18: 80. https://doi.org/10.1186/s12879-018-2991-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Q, Pfeiffer GR 2nd, Gaarde WA (2003) Activation of SRC tyrosine kinases in response to ICAM-1 ligation in pulmonary microvascular endothelial cells. J Biol Chem 278: 47731–47743. https://doi.org/10.1074/jbc.M308466200

    Article  CAS  PubMed  Google Scholar 

  30. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L (2019) Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel) 11: 461. https://doi.org/10.3390/cancers11040461

  31. Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M (2020) Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 18: 305. https://doi.org/10.1186/s12916-020-01749-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu XC, Liang H, Tian Z, Ruan YS, Zhang L, Chen Y (2007) Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochem. Moscow 72: 716–727. https://doi.org/10.1134/S000629790707005X

    Article  CAS  Google Scholar 

  33. Ma D, Cao W, Kapur A, Felder M, Scarlett CO, Patankar MS, Li L (2013) Differential expression of proteins in naive and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J Proteomics 91: 151–163. https://doi.org/10.1016/j.jprot.2013.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheiter M, Lau U, van Ham M, Bulitta B, Grobe L, Garritsen H, Klawonn F, Konig S, Jansch L (2013) Proteome analysis of distinct developmental stages of human natural killer (NK) cells. Mol Cell Proteomics 12: 1099–1114. https://doi.org/10.1074/mcp.M112.024596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Markova KL, Stepanova OI, Sheveleva AR, Kostin NA, Mikhailova VA, Selkov SA, Sokolov DI (2019) Natural killer cell effects upon angiogenesis under conditions of contact-dependent and distant co-culturing with endothelial and trophoblast cells. Med Immunol (Russ) 21: 427–440. https://doi.org/10.15789/1563-0625-2019-3-427-440

  36. Male V, Trundley A, Gardner L, Northfield J, Chang C, Apps R, Moffett A (2010) Natural killer cells in human pregnancy. In: Campbell K. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, 2nd ed. 612: 447–463. Humana Press, Philadelphia. https://doi.org/10.1007/978-1-60761-362-6_30

    Article  CAS  Google Scholar 

  37. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR (2016) VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal 10: 347–354. https://doi.org/10.1007/s12079-016-0352-8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Edsparr K, Johansson BR, Goldfarb RH, Basse PH, Nannmark U, Speetjens FM, Kuppen PJK, Lennernäs B, Albertsson P (2009) Human NK cell lines migrate differentially in vitro related to matrix interaction and MMP expression. Immunol Cell Biol 87: 489–495. https://doi.org/10.1038/icb.2009.35

    Article  CAS  PubMed  Google Scholar 

  39. Bauvois B (2012) New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta 1825: 29–36. https://doi.org/10.1016/j.bbcan.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  40. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282: C947–C970. https://doi.org/10.1152/ajpcell.00389.2001

    Article  CAS  PubMed  Google Scholar 

  41. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korenevsky AV, Shcherbitskaia AD, Berezkina ME, Markova KL, Alexandrova EP, Balabas OA, Selkov SA, Sokolov DI (2020) MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Med Immunol (Russ) 22: 633–646. https://doi.org/10.15789/1563-0625-MMS-1976

  43. Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R, Tian Z (2014) Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem 289: 33311–33319. https://doi.org/10.1074/jbc.M114.603464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh UP, Singh S, Singh R, Cong Y, Taub DD, Lillard JW Jr (2008) CXCL10-producing mucosal CD4+ T cells, NK cells, and NKT cells are associated with chronic colitis in IL-10(-/-) mice, which can be abrogated by anti-CXCL10 antibody inhibition. J Interferon Cytokine Res 28: 31–43. https://doi.org/10.1089/jir.2007.0059

    Article  CAS  PubMed  Google Scholar 

  45. Mori N, Yamashita Y, Tsuzuki T, Nakayama A, Nakazawa M, Hasegawa Y, Kojima H, Nagasawa T (2000) Lymphomatous features of aggressive NK cell leukaemia/lymphoma with massive necrosis, haemophagocytosis and EB virus infection. Histopathology 37: 363–371. https://doi.org/10.1046/j.1365-2559.2000.00936.x

    Article  CAS  PubMed  Google Scholar 

  46. Takeshita M, Yamamoto M, Kikuchi M, Kimura N, Nakayama J, Uike N, Daimaru H, Sawada H, Okamura T (2000) Angiodestruction and tissue necrosis of skin-involving CD56+ NK/T-cell lymphoma are influenced by expression of cell adhesion molecules and cytotoxic granule and apoptosis-related proteins. Am J Clin Pathol 113: 201–211. https://doi.org/10.1309/BFH5-NCNP-DK3J-DQBH

    Article  CAS  PubMed  Google Scholar 

  47. Katsaounis P, Alexopoulou A, Dourakis SP, Smyrnidis A, Marinos L, Filiotou A, Archimandritis AJ (2008) An extranodal NK/T cell lymphoma, nasal type, with specific immunophenotypic and genotypic features. Int J Hematol 88: 202–205. https://doi.org/10.1007/s12185-008-0137-9

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Russian Foundation for Basic Research (grant no. 19-015-00218: cell culture studies, preparative liquid chromatography) and the Ministry of Science and Higher Education of the Russian Federation under contract with D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine (R and D State Registration no. 1021062512052-5-3.2.2: spectrophotometry, electrophoresis).

Author information

Authors and Affiliations

Authors

Contributions

A.K., D.S.: study conception and design; A.S., S.S.: providing key and unique reagents; T.G., M.B., S.S., V.M., and K.M.: conducting experiments, experimental data analysis, and statistical data processing; A.K.: writing and editing a manuscript; S.S.: study supervision; D.S., S.S.: revising and approving a manuscript.

Corresponding author

Correspondence to A. V. Korenevsky.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1134/S0022093022070171.

10893_2022_8371_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenevsky, A.V., Gert, T.N., Berezkina, M.E. et al. Protein Fractions of Natural Killer Cell Lysates Affect the Phenotype, Proliferation and Migration of Endothelial Cells in vitro. J Evol Biochem Phys 58 (Suppl 1), S134–S150 (2022). https://doi.org/10.1134/S0022093022070171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022070171

Keywords:

Navigation