Skip to main content
Log in

Microelectrostimulation of the Rat Lateral Orbital Cortex Causes Specific Reactions of the Circulation and Respiration

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

It has been established that the areas of the autonomic prefrontal cortex, located on the medial and lateral surfaces of the cerebral hemispheres, are elements of the central autonomic network and take part in the control of respiratory and circulatory functions. The results of morphological studies indicate that the cortical area on the orbital and frontal surfaces of the hemisphere forms direct connections with the autonomic cortex and other structures of the central autonomic network. These data suggest the involvement of the orbitofrontal cortex in the control of autonomic functions. The purpose of this study was a direct experimental verification of the hypothesis about the possible involvement of the lateral orbital cortex in the control of respiratory and circulatory functions. For this purpose, in acute experiments on laboratory rats anesthetized with urethane, the reactions of the circulatory and respiratory systems to local microelectrostimulation of the lateral orbital and medial prefrontal (infralimbic) cortex by series of rectangular current pulses were recorded. The experiments showed that stimulation of each of the indicated cortical areas of the same experimental animal caused specific reactions of the respiratory system, which manifested themselves in characteristic changes in the volume-time parameters of external respiration. The circulatory system responded to stimulation of the studied areas of the cortex by a gradual decrease in blood pressure against the background of continued stimulation, and depressor responses to stimulation of the infralimbic and lateral orbital cortex differed in amplitude and temporal course. The results obtained confirmed the hypothesis of the possible involvement of the lateral orbital cortex in the control of respiratory and circulatory functions. It is possible that the lateral orbital cortex realizes its influence on the functions of respiration and circulation by interacting with the visceromotor infralimbic cortex; this assumption requires experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Smith R, Thayer JF, Khalsa SS, Lane RD (2017) The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev 75: 274–296. https://doi.org/10.1016/j.neubiorev.2017.02.003

    Article  Google Scholar 

  2. Aleksandrov VG, Kokurina TN, Rybakova GI, Tumanova TS (2021) Autonomic functions of the prefrontal cortex. Human Physiol 47(5): 571–578. https://doi.org/10.1134/S0362119721050029

    Article  Google Scholar 

  3. Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clinic Proc 68(10): 988–1001. https://doi.org/10.1016/s0025-6196(12)62272-1

    Article  CAS  Google Scholar 

  4. Lamotte G, Shouma K, Benarroch EE (2021) Stress and central autonomic network. Auton Neurosci 235: 102870. https://doi.org/10.1016/j.autneu.2021.102870

    Article  Google Scholar 

  5. Sévoz-Couche C, Comet MA, Bernard JF, Hamon M, Laguzzi R (2006) Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: role of the nucleus tractus solitarius 5-HT2A receptors. Am J Physiol Regul Integr Comp Physiol 291(4): R1007–R1015. https://doi.org/10.1152/ajpregu.00052.2006

    Article  CAS  Google Scholar 

  6. Hassan SF, Cornish JL, Goodchild AK (2013) Respiratory, metabolic and cardiac functions are altered by disinhibition of subregions of the medial prefrontal cortex. J Physiol 591(23): 6069–6088. https://doi.org/10.1113/jphysiol.2013.262071

    Article  CAS  Google Scholar 

  7. Alexandrov VG, Ivanova TG, Alexandrova NP (2007) Prefrontal control of respiration. J Physiol Pharmacol 58 (Suppl 5): 17–23.

    Google Scholar 

  8. Aleksandrov VG, Mercuriev VA, Ivanova TG, Tarasievich AA, Aleksandrova NP (2009) Cortical control of Hering-Breuer reflexes in anesthetized rats. Eur J Med Res 14 (Suppl 4): 1–5. https://doi.org/10.1186/2047-783x-14-s4-1

    Article  Google Scholar 

  9. Aleksandrov VG, Aleksandrova NP (2015) The role of the insular cortex in the control of visceral functions. Human Physiol 41(5): 553–561. https://doi.org/10.1134/S0362119715050023

    Article  Google Scholar 

  10. Rempel-Clower NL (2007) Role of orbitofrontal cortex connections in emotion. Ann N Y Acad Sci 1121: 72–86. https://doi.org/10.1196/annals.1401.026

    Article  Google Scholar 

  11. Izquierdo A (2017) Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J Neurosci 37(44): 10529–10540. https://doi.org/10.1523/JNEUROSCI.1678-17.2017

    Article  CAS  Google Scholar 

  12. Barreiros IV, Ishii H, Walton ME, Panayi MC (2021) Defining an orbitofrontal compass: Functional and anatomical heterogeneity across anterior-posterior and medial-lateral axes. Behav Neurosci 135(2): 165–173. https://doi.org/10.1037/bne0000442

    Article  Google Scholar 

  13. Babalian A, Eichenberger S, Bilella A, Girard F, Szabolcsi V, Roccaro D, Alvarez-Bolado G, Xu C, Celio MR (2019) The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter. Brain Struct Funct 224(1): 293–314. https://doi.org/10.1007/s00429-018-1771-5

    Article  Google Scholar 

  14. Cechetto DF, Saper CB (1990) Role of the cerebral cortex in autonomic function. Central Regulation of Autonomic Functions. Oxford Univer Press, New York.

    Google Scholar 

  15. Kaada BR (1951) Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog; a study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus-fornix and amygdala. Acta Physiol Scand Suppl 24(83): 1–262.

    CAS  Google Scholar 

  16. Neafsey EJ (1990) Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. Prog Brain Res 85: 147–165. https://doi.org/10.1016/s0079-6123(08)62679-5

    Article  CAS  Google Scholar 

  17. Aleksandrov VG, Gubarevich EA, Tumanova TS, Kokurina TN, Markova AYu, Rybakova GI (2021) The effect of electrical stimulation of the orbitofrontal cortex on the circulatory system of an anesthetized rat. Integrat Physiol 2(3): 297–306. https://doi.org/10.33910/2687-1270-2021-2-3-297-306

    Article  Google Scholar 

  18. Paxinos G, Watson C (1998) (eds) The rat brain in stereotaxic coordinates. Fourth edition. Acad Press.

    Google Scholar 

  19. Verberne AJ (1996) Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat. Am J Physiol 270(4 Pt 2): R71371–71379. https://doi.org/10.1152/ajpregu.1996.270.4.R713

    Article  Google Scholar 

  20. Owens NC, Verberne AJ (2000) Medial prefrontal depressor response: involvement of the rostral and caudal ventrolateral medulla in the rat. J Auton Nerv Syst 78(2–3): 86–93. https://doi.org/10.1016/s0165-1838(99)00062-4

    Article  CAS  Google Scholar 

  21. Resstel LB, Corrêa FM (2006) Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Auton Neurosci 2006 (126–127): 130–138. https://doi.org/10.1016/j.autneu.20.06.02.022

    Article  Google Scholar 

  22. Sévoz-Couche C, Comet MA, Bernard JF, Hamon M, Laguzzi R (2006) Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: role of the nucleus tractus solitarius 5-HT2A receptors. Am J Physiol Regul Integr Comp Physiol 291(4): R1007–R1015. https://doi.org/10.1152/ajpregu.00052.2006

    Article  CAS  Google Scholar 

  23. Fisk GD, Wyss JM (1997) Pressor and depressor sites are intermingled in the cingulate cortex of the rat. Brain Res 754(1–2): 204–212. https://doi.org/10.1016/s0006-8993(97)00076-0

    Article  CAS  Google Scholar 

  24. Owens NC, Sartor DM, Verberne A (1999) Medial prefrontal cortex depressor response: role of the solitary tract nucleus in the rat. Neuroscience 89(4): 1331–1346. https://doi.org/10.1016/s0306-4522(98)00389-3

    Article  CAS  Google Scholar 

  25. Resstel LB, Fernandes KB, Corrêa FM (2004) Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat. Brain Res 1015(1–2): 136–144. https://doi.org/10.1016/j.brainres.2004.04.065

    Article  CAS  Google Scholar 

  26. Rybak IA, Shevtsova NA, Paton JF, Dick TE, St-John WM, Mörschel M, Dutschmann M (2004) Modeling the ponto-medullary respiratory network. Respir Physiol Neurobiol 143(2–3): 307–319. https://doi.org/10.1016/j.resp.2004.03.020

    Article  CAS  Google Scholar 

  27. Trevizan-Baú P, Dhingra RR, Furuya WI, Stanić D, Mazzone SB, Dutschmann M (2021) Forebrain projection neurons target functionally diverse respiratory control areas in the midbrain, pons, and medulla oblongata. J Comp Neurol 529(9): 2243–2264. https://doi.org/10.1002/cne.25091

    Article  Google Scholar 

  28. Bilella A, Alvarez-Bolado G, Celio MR (2016) The Foxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits. J Comp Neurol 524(15): 2955–2981. https://doi.org/10.1002/cne.24057

    Article  CAS  Google Scholar 

  29. Subramanian HH, Balnave RJ, Holstege G (2008) The midbrain periaqueductal gray control of respiration. J Neurosci 28(47): 12274–12283. https://doi.org/10.1523/JNEUROSCI.4168-08.2008

    Article  CAS  Google Scholar 

  30. Faull OK, Subramanian HH, Ezra M, Pattinson KT (2019) The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. Neurosci Biobehav Rev 98: 135–144. https://doi.org/10.1016/j.neubiorev.2018.12.020

    Article  Google Scholar 

Download references

Funding

This study was supported by the State Program 47 GP “Scientific and Technological Development of the Russian Federation” (2019–2030), theme 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Contributions

T.N.K.—planning experiments, data collection and processing, writing the manuscript. E.A.G.—idea of work, data collection and processing, writing the manuscript. T.S.T.—data collection and processing. G.I.R.—data collection and processing. V.G.A.—idea of work, planning of experiments, editing the manuscript.

Corresponding author

Correspondence to V. G. Aleksandrov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 12, pp. 1695–1705https://doi.org/10.31857/S0869813922120068.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokurina, T.N., Gubarevich, E.A., Rybakova, G.I. et al. Microelectrostimulation of the Rat Lateral Orbital Cortex Causes Specific Reactions of the Circulation and Respiration. J Evol Biochem Phys 58, 2101–2108 (2022). https://doi.org/10.1134/S0022093022060369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022060369

Keywords:

Navigation