Skip to main content
Log in

Age-Related Changes in the Indices of Cerebral Blood Flow Velocity in Rats

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Aging is accompanied by changes in the structure and functional activity of cerebral vessels, which may lead to cerebral blood flow impairments. Here, age-related changes in the indices of cerebral blood flow velocity (BFV) were studied using Doppler ultrasonography. The state of blood flow in the cortex and subcortical structures of the cerebral hemispheres was comparatively analyzed by the value of linear velocities and blood flow indices in Sprague–Dawley rats aged 4 vs. 18 months. It was found that by the age of 18 months, the level of cerebrovascular resistance decreased, as indicated by an increase in end-diastolic BFV and a decrease in the Gosling pulsatility index. At the same time, the perfusion of the frontal and parietal lobes of the cerebral hemispheres increased due to an increase in the peak systolic, end-diastolic, and mean velocities per cardiac cycle; collateral blood supply to the brain was activated, as evidenced by a decrease in the mean systolic BFV in the frontal lobe. All these changes may represent primary adaptive manifestations of the impaired cerebral hemodynamics aimed at maintaining adequate perfusion of the aging brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Diaz-Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM (2016) Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am J Physiol Heart Circ Physiol 310(3):H365–H375. https://doi.org/10.1152/ajpheart.00562.2015

    Article  PubMed  Google Scholar 

  2. Staffaroni AM, Cobigo Y, Elahi FM, Casaletto KB, Walters SM, Wolf A, Lindbergh CA, Rosen HJ, Kramer JH (2019) A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum Brain Mapp 40(12):3522–3533. https://doi.org/10.1002/hbm.24613

    Article  PubMed  PubMed Central  Google Scholar 

  3. Toth P, Tarantini S, Csiszar A, Ungvari Z (2017) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 312(1):H1–H20. https://doi.org/10.1152/ajpheart.00581.2016

    Article  PubMed  Google Scholar 

  4. Hshieh TT, Dai W, Cavallari M, Guttmann CR, Meier DS, Schmitt EM, Dickerson BC, Press DZ, Marcantonio ER, Jones RN, Gou YR, Travison TG, Fong TG, Ngo L, Inouye SK, Alsop DC; SAGES Study Group (2017) Cerebral blood flow MRI in the nondemented elderly is not predictive of post-operative delirium but is correlated with cognitive performance. J Cereb Blood Flow Metab 37(4):1386–1397. https://doi.org/10.1177/0271678X16656014

    Article  PubMed  Google Scholar 

  5. Aanerud J, Borghammer P, Chakravarty MM, Vang K, Rodell AB, Jónsdottir KY, Møller A, Ashkanian M, Vafaee MS, Iversen P, Johannsen P, Gjedde A (2012) Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 32(7):1177–1187. https://doi.org/10.1038/jcbfm.2012.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nemati M, Bavil AS, Taheri N (2009) Comparison of normal values of Duplex indices of vertebral arteries in young and elderly adults. Cardiovasc Ultrasound 7:2. https://doi.org/10.1186/1476-7120-7-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang N, Gordon ML, Goldberg TE (2017) Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 72:168–175. https://doi.org/10.1016/j.neubiorev.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  8. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101(4):1487–1559. https://doi.org/10.1152/physrev.00022.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yazici B, Erdogmus B, Tugay A (2005) Cerebral blood flow measurements of the extracranial carotid and vertebral doppler ultrasonography in healthy adults. Diagn Interv Radiol 11:195–198.

  10. Voznyuk IA, Polushin AYu, Stepanov EA (2013) Quantitative estimation of the parameters of ultrasonic cerebral blood flow (value and norm). Region Blood Circulat and Microcircul 12(4):30–40. (In Russ).

  11. Lee MY, Wu CM, Chu CS, Lee KT, Sheu SH, Lai WT (2008) Association of carotid hemodynamics with risk of coronary heart disease in a Taiwanese population with essential hypertension. Am J Hypertens 21(6):696–700. https://doi.org/10.1038/ajh.2008.160

    Article  PubMed  Google Scholar 

  12. Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP (2014) Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci 16: 357–364. https://doi.org/10.1038/nn.3324

    Article  CAS  Google Scholar 

  13. Oh H, Madison C, Villeneuve S, Markley C, Jagust WJ (2014) Association of gray matter atrophy with age, β-amyloid, and cognition in aging. Cereb Cortex 24:1609–1618. https://doi.org/10.1093/cercor/bht017

    Article  PubMed  Google Scholar 

  14. Sokolova IB, Sergeev IV, Fedotova OR, Dvoretskii DP (2014) Age-related changes of microcirculation in pial blood vessels of the sensorimotor cortex of the rat brain. Advanc Gerontol 4(2):145–149. https://doi.org/10.1134/S207905701402012X

    Article  Google Scholar 

  15. Sonntag WE, Lynch C, Thornton P, Khan A, Bennett S, Ingram R (2000) The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J Anat 197(4):575–585. https://doi.org/10.1046/j.1469-7580.2000.19740575.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heyer EJ, Mergeche JL, Connolly ES Jr (2014) Middle cerebral artery pulsatility index and cognitive improvement after carotid endarterectomy for symptomatic stenosis. J Neurosurg 120(1):126–131. https://doi.org/10.3171/2013.8.JNS13931

    Article  PubMed  Google Scholar 

  17. Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K, Bakke SJ (1994) Cerebral vasoreactivity in unilateral carotid artery disease. A comparison of blood flow velocity and regional cerebral blood flow measurements. Stroke 25(3):621–626. https://doi.org/10.1161/01.str.25.3.621

    Article  CAS  PubMed  Google Scholar 

  18. De Silva TM, Faraci FM (2016) Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol 36:241–258. https://doi.org/10.1007/s10571-015-0308-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120:287–296. https://doi.org/10.1007/s00401-010-0718-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang N, Allali G, Kesavadas C, Noone ML, Pradeep VG, Blumen HM, Verghese J (2015) Cerebral small vessel disease and motoric cognitive risk syndrome: results from the Kerala-Einstein Study. J Alzheimers Dis 50:699–707. https://doi.org/10.3233/JAD-150523

    Article  Google Scholar 

  21. Wierenga CE, Hays CC, Zlatar ZZ (2014) Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis 42:S411–S419. https://doi.org/10.3233/JAD-141467

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghaffari M, Alaraj A, Du X, Zhou XJ, Charbel FT, Linninger AA (2018). Quantification of near-wall hemodynamic risk factors in large-scale cerebral arterial trees. Int J Numer Method Biomed Eng 34(7):e2987. https://doi.org/10.1002/cnm.2987

    Article  PubMed  PubMed Central  Google Scholar 

  23. O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46:200–204. https://doi.org/10.1161/01.HYP.0000168052.00426.65

    Article  CAS  PubMed  Google Scholar 

  24. Nevzorova VA, Shumatov VB, Nastradin OV, Zakharchuk NV (2012) The state of vessel endothelium in patients with risk factors and ischemic heart disease. Pacific Med J 2:37–44. (In Russ).

  25. Soinne L, Helenius J, Tatlisumak T, Saimanen E, Salonen O, Lindsberg PJ, Kaste M (2003) Cerebral hemodynamics in asymptomatic and symptomatic patients with high-grade carotid stenosis undergoing carotid endarterectomy. Stroke 34(7):1655–1661. https://doi.org/10.1161/01.STR.0000075605.36068.D9

    Article  PubMed  Google Scholar 

  26. Guan J, Zhang S, Zhou Q, Li C, Lu Z (2013) Usefulness of transcranial Doppler ultrasound in evaluating cervical-cranial collateral circulations. Interv Neurol 2(1):8–18. https://doi.org/10.1159/000354732

    Article  PubMed  PubMed Central  Google Scholar 

  27. Albina G, Fernandez Cisneros L, Laiño R, Nobo UL, Ortega D, Schwarz E, Barja L, Lagos R, Giniger A, Ameriso SF (2004) Trancranial Doppler monitoring during head upring tilt table testing in patient with suspected neurocardiogenie syncope. Europace 6(1):63–69. https://doi.org/10.1016/j.eupc.2003.09.009

    Article  PubMed  Google Scholar 

Download references

Funding

This study was state budget funded, supported by the State Program 47 GP “Scientific and Technological Development of the Russian Federation” (2019–2030), theme no. 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experimental design, data collection and processing, as well as writing and editing a manuscript—O.P.

Corresponding author

Correspondence to O. P. Gorshkova.

Ethics declarations

CONFLICT OF INTEREST

The author declares that she has neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 6, pp. 736–744https://doi.org/10.31857/S0869813922060036.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, O.P. Age-Related Changes in the Indices of Cerebral Blood Flow Velocity in Rats. J Evol Biochem Phys 58, 894–900 (2022). https://doi.org/10.1134/S0022093022030231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030231

Keywords:

Navigation