Skip to main content
Log in

Changes in the Сontribution of IKCa Сhannels to Tone Maintenanсe and Dilation of Pial Arteries in Aging Rats after Ischemia-Reperfusion

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Changes in the contribution of intermediate conductance Ca2+-activated potassium channels (IKCa) to basal tone maintenance and acetylcholine (ACh)-mediated dilation of pial arteries after global cerebral ischemia (“2VO + hypo” model) were studied in 18-month-old Sprague–Dawley rats. Sham-operated rats served as a control. Vascular examination was performed 7, 14 and 21 days after ischemia/reperfusion (I/R) using intravital microphotography. Changes in the contribution of IKCa channels to basal tone were assessed by the number of pial arteries constricted in response to the IKCa channel blocker clotrimazole (10–7 M, 5 min). Changes in the contribution of IKCa channels to vascular dilation was evaluated by comparing the number and degree of pial artery dilatations in response to ACh (10–7 M, 8 min) before and after clotrimazole application. It was found that I/R leads to a decrease in the number of vascular dilatations in response to ACh, which persists over the first 14 days after ischemic exposure. During this post-ischemic period, the contribution of IKCa channels to pial artery tone and ACh-mediated dilatory response is also reduced. This phenomenon is already observed 7 days following I/R, while after 14 days, IKCa channels are practically no longer involved in the dilatory response of the pial arteries to ACh. By day 21 after I/R, all the above processes recover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Davis CM, Siler DA, Alkayed NJ (2011) Endothelium-derived hyperpolarizing factor in the brain: influence of sex, vessel size and disease state. Womens Health (Lond) 7(3):293–303. https://doi.org/10.2217/whe.11.26

  2. Ma J, Ma Y, Shuaib A, Winship IR (2020) Impaired collateral flow in pial arterioles of aged rats during ischemic stroke. Transl Stroke Res 11(2):243–253. https://doi.org/10.1007/s12975-019-00710-1

    Article  CAS  PubMed  Google Scholar 

  3. Yang Q, He GW, Underwood MJ, Yu CM (2016) Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. AM J Transl Res 8(2):765–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Goto K, Ohtsubo T, Kitazono T (2018) Endothelium-dependent hyperpolarization (EDH) in hypertension: The role of endothelial ion channels. Int J Mol Sci 19(1): 315. https://doi.org/10.3390/ijms19010315

    Article  CAS  PubMed Central  Google Scholar 

  5. Tano JY, Gollasch M (2014) Calcium-activated potassium channels in ischemia reperfusion: a brief update. Front Physiol 5:381. https://doi.org/10.3389/fphys.2014.00381

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hakim MA, Chum PP, Buchholz JN, Behringer EJ (2020) Aging alters cerebrovascular endothelial GPCR and K+ channel function: divergent role of biological sex. J Gerontol A Biol Sci Med Sci 75(11):2064–2073. https://doi.org/10.1093/gerona/glz275

    Article  CAS  PubMed  Google Scholar 

  7. Garland CJ, Bagher P, Powell C, Ye X, Lemmey HAL, Borysova L, Dora KA (2017) Voltage-dependent Ca2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilationin arterioles. Sci Signal 10: eall3806. https://doi.org/10.1126/scisignal.aal3806

    Article  CAS  Google Scholar 

  8. Dong P, Zhao J, Zhang Y, Dong J, Zhang L, Li D, Li L, Zhang X, Yang B, Lei W (2014) Aging causes exacerbated ischemic brain injury and failure of sevoflurane post-conditioning: role of B-cell lymphoma-2. Neuroscience 275:2–11. https://doi.org/10.1016/j.neuroscience.2014.05.064

    Article  CAS  PubMed  Google Scholar 

  9. Tang Y, Wang L, Wang J, Lin X, Wang Y, Jin K, Yang GY (2016) Ischemia-induced angiogenesis is attenuated in aged rats. Aging Dis 7:326–335. https://doi.org/10.14336/AD.2015.1125

    Article  PubMed  Google Scholar 

  10. Gorshkova OP, Shuvaeva VN (2020) Age-related changes in the role of calcium activated potassium channels in acetylcholine mediated dilatation of pial arterial vessels in rats. J Evol Biochem Physiol 56(2):145–152. https://doi.org/10.1134/S0022093020020064

    Article  CAS  Google Scholar 

  11. Izzo C, Carrizzo A, Alfano A, Virtuoso N, Capunzo M, Calabrese M, De Simone E, Sciarretta S, Frati G, Oliveti M, Damato A, Ambrosio m, De Caro F, Remondelli P, Vecchione C (2018) The impact of aging on cardio and cerebrovascular diseases. Int J Mol Sci 19(2):481. https://doi.org/10.3390/ijms19020481

    Article  CAS  PubMed Central  Google Scholar 

  12. Winship IR (2015) Cerebral collaterals and collateral therapeutics for acute ischemic stroke. Microcirculation 22(3):228–236. https://doi.org/10.1111/micc.12177

    Article  PubMed  Google Scholar 

  13. Van der Worp HB, Van Gijn J (2007) Acute ischemic stroke. New England J Med 357(6): 572–579. https://doi.org/10.1056/NEJMcp072057

    Article  CAS  Google Scholar 

  14. Lensman M, Korzhevskii D, Mourovets VO, Kostkin V, Izvarina N, Perasso L, Gandolfo C, Otellin V, Polenov S, Balestrino M (2006) Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114 (1): 187–194. https://doi.org/10.1016/j.brainres.2006.06.103

    Article  CAS  PubMed  Google Scholar 

  15. Behringer EJ, Hakim MA (2019) Functional interaction among KCa and TRP channels for cardiovascular physiology: modern perspectives on aging and chronic disease. Int J Mol Sci 20(6):1380. https://doi.org/10.3390/ijms20061380

    Article  CAS  PubMed Central  Google Scholar 

  16. Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA (2009) SKCa and IKCa channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke 40(4):1451–1457. https://doi.org/10.1161/STROKEAHA.108.535435

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28(5):703–711. https://doi.org/10.1097/00005344-199611000-00014.

    Article  CAS  PubMed  Google Scholar 

  18. Gorshkova OP, Shuvaeva VN, Lentsman MV, Artemyeva AI (2016) Postischemic changes in the vasomotor function of the endothelium. Modern Probl Sci and Educat 5:1. http://science-education.ru/ru/article/view?id=25270 (accessed: 09.01.2022).

    Google Scholar 

  19. Dabertrand F, Nelson MT, Brayden JE (2012) Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels. Circ Res 110(2):285–294 https://doi.org/10.1161/CIRCRESAHA.111.258145

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Lapina N, Weinzierl N, Schilling L (2018) Enhancement of bradykinin-induced relaxation by focal brain ischemia in the rat middle cerebral artery: receptor expression upregulation and activation of multiple pathways. PLoS One 13(6):e0198553. https://doi.org/10.1371/journal.pone.0198553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marrelli SP (2002) Altered endothelial Ca2+ regulation after ischemia/reperfusion produces potentiated endothelium-derived hyperpolarizing factor-mediated dilations. Stroke 33(9):2285–2291. https://doi.org/10.1161/01.str.0000027439.61501.39

    Article  CAS  PubMed  Google Scholar 

  22. Palomares SM, Cipolla MJ (2011) Vascular protection following cerebral ischemia and reperfusion. J Neurol Neurophysiol 2011:1–12. https://doi.org/10.4172/2155-9562.s1-004

    Article  Google Scholar 

  23. Wulff H, Gutman GA, Cahalan MD, Chandy KG (2001) Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. J Biol Chem 276:32040–32045. https://doi.org/10.1074/jbc.m105231200

    Article  CAS  PubMed  Google Scholar 

  24. Cipolla MJ, Bullinger LV (2008) Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation 15(6):495–501. https://doi.org/10.1080/10739680801986742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2016) Ischemia/reperfusion. Compr Physiol 7(1):113–170. https://doi.org/10.1002/cphy.c160006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT (2016) Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J Physiol 594(12): 3271–3285. https://doi.org/10.1113/JP271652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255. https://doi.org/10.1161/CIRCRESAHA.108.172379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mozaffari MS, Liu JY, Abebe W, Baban B (2013) Mechanisms of load dependency of myocardial ischemia reperfusion injury. Am J Cardiovasc Dis 3(4):180–196.

    PubMed  PubMed Central  Google Scholar 

  29. Behringer EJ, Shaw R.L, Westcott EB, Socha MJ, Segal SS (2013) Aging impairs electrical conduction along endothelium of resistance arteries through enhanced Ca2+-activated K+ channel activation. Arterioscler Thromb Vasc Biol 33(8): 1892–1901. https://doi.org/10.1161/ATVBAHA.113.301514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the State Program 47 GP “Scientific and Technological Development of the Russian Federation” (2019–2030), theme reg. no. 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (O.P.G.); data collection (I.B.S.); data processing (O.P.G., I.B.S.); writing and editing a manuscript (O.P.G., I.B.S.).

Corresponding author

Correspondence to O. P. Gorshkova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 5, pp. 636–648https://doi.org/10.31857/S0869813922050065.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, O.P., Sokolova, I.B. Changes in the Сontribution of IKCa Сhannels to Tone Maintenanсe and Dilation of Pial Arteries in Aging Rats after Ischemia-Reperfusion. J Evol Biochem Phys 58, 815–824 (2022). https://doi.org/10.1134/S0022093022030152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030152

Keywords:

Navigation