Skip to main content
Log in

Effects of Intranasally Administered Insulin and Gangliosides on Metabolic Parameters and Activity of the Hepatic Insulin System in Rats with Type 2 Diabetes Mellitus

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Insulin regulates glucose metabolism via both direct hormone interactions with its signaling system and glucose transporters in cells of peripheral tissues and indirectly through the central nervous system. In type 2 diabetes mellitus (T2DM), impaired receptor-mediated transport across the blood–brain barrier leads to insulin deficiency in the brain and causes dysfunctions of eating behavior, thermogenesis, carbohydrate and lipid metabolism. Intranasal insulin (I-I) administration is used as an alternative way of its delivery to increase the hormone level in the brain. A combination of I-I administration with various insulin sensitizers facilitates the restoration of glucose tolerance in a shorter period of time at lower doses of insulin. Such a therapy, combining I-I administration (0.5 IU/rat/day) and intranasally administered total calf brain gangliosides (6 mg/kg/day), was applied here for the first time to treat T2DM rats. Intranasal co-administration of insulin and gangliosides led to the normalization of glucose tolerance in T2DM animals after 4 weeks of treatment, while taken separately, the drugs were less effective. As shown by Western blotting, the increase in hepatic insulin sensitivity may be due to a significant decrease in the expression of a negative insulin signaling regulator protein tyrosine phosphatase 1B (PTP1B) and an increase in the phosphorylation level of the key effector protein kinases Akt at Ser473, GSK3β at Ser9 and p38-MAPK at Thr180/Tyr182. Inhibitory phosphorylation of GSK3β at Ser9 may occur due to the activation of both Akt kinase and p38-MAPK, with the contribution of the latter being, in our opinion, more significant. Since intranasally administered insulin and gangliosides may directly affect brain regions responsible for the regulation of peripheral insulin sensitivity and hepatic carbohydrate metabolism, we concluded that the central mechanism of their action was predominant under conditions used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Brns C, Jensen CB, Storgaard H, Hiscock NJ, White A, Appel JS, Jacobsen S, Nilsson E, Larsen CM, Astrup A, Quistorff B, Vaag A (2009) Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol 587: 2387–2397. https://doi.org/10.1113/jphysiol.2009.169078

    Article  CAS  Google Scholar 

  2. Small L, Brandon AE, Turner N, Cooney GJ (2018) Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed? Am J Physiol Endocrinol Metab 314: E251–E265. https://doi.org/10.1152/ajpendo.00337.2017

    Article  CAS  PubMed  Google Scholar 

  3. Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012:384017. https://doi.org/10.1155/2012/384017

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heni M, Kullmann S, Preissl H, Fritsche A, Häring HU (2015) Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 11:701–711. https://doi.org/10.1038/nrendo.2015.173

    Article  CAS  PubMed  Google Scholar 

  5. Scherer T, Sakamoto K, Buettner C (2021) Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 17:468–483. https://doi.org/10.1038/s41574-021-00498-x

    Article  CAS  PubMed  Google Scholar 

  6. Adam CL, Findlay PA, Aitken RP, Milne JS, Wallace JM (2012) In vivo changes in central and peripheral insulin sensitivity in a large animal model of obesity. Endocrinology 153:3147–3157. https://doi.org/10.1210/en.2012-1134

    Article  CAS  PubMed  Google Scholar 

  7. Chua LM, Lim ML, Chong PR, Hu ZP, Cheung NS, Wong BS (2012) Impaired neuronal insulin signaling precedes Aβ42 accumulation in female AβPPsw/PS1ΔE9 mice. J. Alzheimers Dis 29:783–791. https://doi.org/10.3233/JAD-2012-111880

    Article  CAS  Google Scholar 

  8. Ruegsegger GN, Manjunatha S, Summer P, Gopala S, Zabeilski P, Dasari S, Vanderboom PM, Lanza IR, Klaus KA, Nair KS (2019) Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J 33:4458–4472. https://doi.org/10.1096/fj.201802043R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1:FSO25. https://doi.org/10.4155/fso.15.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516. https://doi.org/10.1038/nn849

    Article  CAS  PubMed  Google Scholar 

  11. Derkach KV, Bogush IV, Berstein LM, Shpakov AO (2015) The influence of intranasal insulin on hypothalamic-pituitary axis in normal and diabetic rats. Horm Metab Res 47: 916–924. https://doi.org/10.1055/s-0035-1547236

    Article  CAS  PubMed  Google Scholar 

  12. Derkach KV, Bondareva VM, Perminova AA, Shpakov AO (2019) C-peptide and insulin during combined intranasal administration improve the metabolic parameters and activity of the adenylate cyclase system in the hypothalamus, myocardium, and epididymal fat of rats with type 2 diabetes. Cell and Tissue Biol 13:228–236. https://doi.org/10.1134/S1990519X1903003

    Article  Google Scholar 

  13. Landreh M, Johansson J, Jörnvall H (2013) C-peptide: a molecule balancing insulin states in secretion and diabetes-associated depository conditions. Horm Metab Res 45:769–773. https://doi.org/10.1055/s-0033-1347208

    Article  CAS  PubMed  Google Scholar 

  14. Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T (200) Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 25:819–829. https://doi.org/10.1128/MCB.25.2.819-829.2005

  15. Zhang ZY, Dodd GT, Tiganis T (2015) Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Trends Pharmacol Sci 36:661–674. https://doi.org/10.1016/j.tips.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  16. Xu W, Caracciolo B, Wang HX, Winblad B, Backman L, Qiu C, Fratiglioni L (2010) Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 59:2928–2935. https://doi.org/10.2337/db10-0539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Asslih S, Damri O, Agam G (2021) Neuroinflammation as a Common Denominator of Complex Diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders). Int J Mol Sci 22:6138. https://doi.org/10.3390/ijms22116138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. André C, Guzman-Quevedo O, Rey C, Rémus-Borel J, Clark S, Castellanos-Jankiewicz A, Ladeveze E, Leste-Lasserre T, Nadjar A, Abrous DN, Laye S, Cota D (2017) Inhibiting Microglia Expansion Prevents Diet-Induced Hypothalamic and Peripheral Inflammation. Diabetes 66:908–919. https://doi.org/10.2337/db16-0586

    Article  CAS  PubMed  Google Scholar 

  19. Avrova NF, Victorov IV, Tyurin VA, Zakharova IO, Sokolova TV, Andreeva NA, Stelmaschuk EV, Tyurina YY, Gonchar VS (1998) Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem Res 23:945–952. https://doi.org/10.1023/a:1021076220411

    Article  CAS  PubMed  Google Scholar 

  20. Gorria M, Huc L, Sergent O, Rebillard A, Gaboriau F, Dimanche-Boitrel MT, Lagadic-Gossmann D (2006) Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochem Pharmacol 72:1343–1353. https://doi.org/10.1016/j.bcp.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  21. Zakharova IO, Sokolova TV, Vlasova YA, Furaev VV, Rychkova MP, Avrova NF (2014) GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity. Neurochem Res 39:2262–2275. https://doi.org/10.1007/s11064-014-1428-6

    Article  CAS  PubMed  Google Scholar 

  22. Nikolaeva S, Bayunova L, Sokolova T, Vlasova Y, Bachteeva V, Avrova N, Parnova R (2015) GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta 1851:239–247. https://doi.org/10.1016/j.bbalip.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  23. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V (2020) Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 14:572965. https://doi.org/10.3389/fnins.2020.572965

    Article  PubMed  PubMed Central  Google Scholar 

  24. Galleguillos D, Wang Q, Steinberg N, Shrivastava G, Dhami K, Rubinstein K, Giuliani F, Churchward M, Power C, Todd K, Sipione S (2020) Anti-inflammatory role of GM1 and modulatory effects of gangliosides on microglia functions. bioRxiv. https://doi.org/10.1101/2020.03.04.975862

  25. Dholakia J, Prabhakar B, Shende P (2021) Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 608:121068. https://doi.org/10.1016/j.ijpharm.2021.121068

    Article  CAS  PubMed  Google Scholar 

  26. Zakharova IO, Avrova NF (2001) The effect of cold stress on ganglioside fatty acid composition and ganglioside-bound sialic acid content of rat brain subcellular fractions. J Therm Biol 26:215–222. https://doi.org/10.1016/s0306-4565(00)00045-0

    Article  CAS  PubMed  Google Scholar 

  27. Vanier MT, Holm M, Ohman R, Svennerholm L (1971) Developmental profiles of gangliosides in human and rat brain. J Neurochem 18:581–592. https://doi.org/10.1111/j.1471-4159.1971.tb11988.x

    Article  CAS  PubMed  Google Scholar 

  28. Derkach KV, Bondareva VM, Chistyakova OV, Berstein LM, Shpakov AO (2015) The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. Int J Endocrinol 2015:245459. https://doi.org/10.1155/2015/245459

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ruud J, Steculorum S M, Brüning J (2017) Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun 8:15259. https://doi.org/10.1038/ncomms15259

    Article  PubMed  PubMed Central  Google Scholar 

  30. Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382. https://doi.org/10.1038/nm1202-798

    Article  CAS  PubMed  Google Scholar 

  31. Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C (2011) Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 13:183–194. https://doi.org/10.1016/j.cmet.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romanova IV, Derkach KV, Mikhrina AL, Sukhov IB, Mikhailova EV, Shpakov AO (2018) The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res 43:821–837. https://doi.org/10.1007/s11064-018-2485-z

    Article  CAS  PubMed  Google Scholar 

  33. Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14:e0213779. https://doi.org/10.1371/journal.pone.0213779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zakharova IO, Bayunova LV, Zorina II, Sokolova TV, Shpakov AO, Avrova NF (2021) Insulin and α-Tocopherol Enhance the Protective Effect of Each Other on Brain Cortical Neurons under Oxidative Stress Conditions and in Rat Two-Vessel Forebrain Ischemia/Reperfusion Injury. Int J Mol Sci 220:11768. https://doi.org/10.3390/ijms222111768

    Article  CAS  Google Scholar 

  35. Sukhov IB, Lebedeva MF, Zakharova IO, Derkach KV, Bayunova LV, Zorina II, Avrova NF, Shpakov AO (2019) Intranasal administration of insulin and gangliosides improves spatial memory in rats with neonatal type 2 Diabetes Mellitus. Bull Exp Biol Medicine 168:317–320. https://doi.org/10.1007/s10517-020-04699-8

    Article  CAS  Google Scholar 

  36. Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296:160–170. https://doi.org/10.1016/0005-2760(73)90055-6

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto HA, Mohanan PV (2003) Ganglioside GT1b and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res 964: 100–106. https://doi.org/10.1016/s0006-8993(02)04083-0

    Article  CAS  PubMed  Google Scholar 

  38. Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T, Furukawa K (2004) Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 279:33368–33378. https://doi.org/10.1074/jbc.M403816200

    Article  CAS  PubMed  Google Scholar 

  39. Farooqui T, Franklin T, Pearl DK, Yates AJ (1997) Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J Neurochem 68:2348–2355. https://doi.org/10.1046/j.1471-4159.1997.68062348.x

    Article  CAS  PubMed  Google Scholar 

  40. Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A (2016) The ganglioside GM1 interacts with the serotonin 1A receptor via the sphingolipid binding domain. Biochim Biophys Acta 1858:2818–2826. https://doi.org/10.1016/j.bbamem.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  41. Ji S, Tokizane K, Ohkawa Y, Ohmi Y, Banno R, Okajima T, Kiyama H, Furukawa K, Furukawa K (2016) Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochem Biophys Res Commun 479:453–460. https://doi.org/10.1016/j.bbrc.2016.09.077

    Article  CAS  PubMed  Google Scholar 

  42. Inamori KI, Inokuchi JI (2020) Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. Int J Mol Sci 21:5349. https://doi.org/10.3390/ijms21155349

    Article  CAS  PubMed Central  Google Scholar 

  43. Furian AF, Rattmann YD, Oliveira MS, Royes LF, Marques MC, Santos AR, Mello CF (2009) Nitric oxide and potassium channels mediate GM1 ganglioside-induced vasorelaxation. Naunyn Schmiedebergs Arch Pharmacol 380:487–495. https://doi.org/10.1007/s00210-009-0469-x

    Article  CAS  PubMed  Google Scholar 

  44. Dieterle V, Herzer S, Gröne H-J, Jennemann R, Nordström V (2020) Ganglioside deficiency in hypothalamic POMC neurons promotes body weight gain. Int J Obes 44:510–524. https://doi.org/10.1038/s41366-019-0388-y

    Article  CAS  Google Scholar 

  45. Eleftheriou P, Geronikaki A, Petrou A (2019) PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 19:246–263. https://doi.org/10.2174/1568026619666190201152153

    Article  CAS  PubMed  Google Scholar 

  46. Villamar-Cruz O, Loza-Mejía MA, Arias-Romero LE, Camacho-Arroyo I (2021) Recent advances in PTP1B signaling in metabolism and cancer. Biosci Rep 41:BSR20211994. https://doi.org/10.1042/BSR20211994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao L, Wang Z, Wan W (2018) Suppressor of Cytokine Signaling 3: Emerging Role Linking Central Insulin Resistance and Alzheimer’s Disease. Front Neurosci 12:417. https://doi.org/10.3389/fnins.2018.00417

    Article  PubMed  PubMed Central  Google Scholar 

  48. Linossi EM, Calleja DJ, Nicholson SE (2018) Understanding SOCS protein specificity. Growth Factors 36:104–117. https://doi.org/10.1080/08977194.2018.1518324

    Article  CAS  PubMed  Google Scholar 

  49. Banks AS, Li J, McKeag L, Hribal ML, Kashiwada M, Accili D, Rothman PB (2005) Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest 115:2462–2471. https://doi.org/10.1172/JCI23853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saltiel AR (2021) Insulin signaling in health and disease. J Clin Invest 131:e142241. https://doi.org/10.1172/JCI142241

    Article  CAS  PubMed Central  Google Scholar 

  51. Petersen MC, Shulman G (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sopasakis V, Liu P, Suzuki R, Kondo T, Winnay J, Tran TT, Asano T, Smyth G, Sajan M, Farese RV, Kahn C R, Zhao JJ (2010) Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab 11:220–230. https://doi.org/10.1016/j.cmet.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morales-Ruiz M, Cejudo-Martín P, Fernández-Varo G, Tugues S, Ros J, Angeli P, Rivera F, Arroyo V, Rodés J, Sessa WC, Jiménez W (2003) Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology 125:522–531. https://doi.org/10.1016/s0016-5085(03)00909-0

    Article  CAS  PubMed  Google Scholar 

  54. Morales-Ruiz M, Santel A, Ribera J, Jiménez W (2017) The Role of Akt in Chronic Liver Disease and Liver Regeneration. Semin Liver Dis 37:11–16. https://doi.org/10.1055/s-0036-1597819

    Article  CAS  PubMed  Google Scholar 

  55. Bala A, Roy S, Das D, Marturi V, Mondal C, Patra S, Haldar PK, Samajdar G (2021) Role of Glycogen synthase kinase-3 in the etiology of Type 2 Diabetes Mellitus: A review. Curr Diabetes Rev. Jul 29. https://doi.org/10.2174/1573399817666210730094225. Epub ahead of print.

  56. Tormos AM, Taléns-Visconti R, Nebreda AR, Sastre J (2013) p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 47:905–916. https://doi.org/10.3109/10715762.2013.821200

    Article  CAS  PubMed  Google Scholar 

  57. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 320:667–670. https://doi.org/10.1126/science.1156037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165. https://doi.org/10.1016/j.ccr.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rius-Pérez S, Tormos AM, Pérez S, Finamor I, Rada P, Valverde ÁM, Nebreda AR, Sastre J, Taléns-Visconti R (2019) p38α deficiency restrains liver regeneration after partial hepatectomy triggering oxidative stress and liver injury. Sci Rep 9:3775. https://doi.org/10.1038/s41598-019-39428-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Revunov E, Johnström P, Arakawa R, Malmquist J, Jucaite A, Defay T, Takano A, Schou M (2020) First Radiolabeling of a Ganglioside with a Positron Emitting Radionuclide: In Vivo PET Demonstrates Low Exposure of Radiofluorinated GM1 in Non-human Primate Brain. ACS Chem Neurosci. 11:1245–1249. https://doi.org/10.1021/acschemneuro.0c00161

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funding from the Ministry of Science and Higher Education of the Russian Federation to the IEPhB RAS (AAAA-A18-118012290427-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (N.F.A., I.O.Z., K.V.D., L.V.B.), data collection (I.O.Z., L.V.B., K.V.D., I.O.I.), data processing (I.O.Z., L.V.B., K.V.D.), writing and editing the manuscript (I.O.Z., A.O.S., L.V.B., N.F.A.).

Corresponding author

Correspondence to I. O. Zakharova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest concerned with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 2, pp. 141–154https://doi.org/10.31857/S0044452922020085.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.O., Bayunova, L.V., Derkach, K.V. et al. Effects of Intranasally Administered Insulin and Gangliosides on Metabolic Parameters and Activity of the Hepatic Insulin System in Rats with Type 2 Diabetes Mellitus. J Evol Biochem Phys 58, 380–394 (2022). https://doi.org/10.1134/S0022093022020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022020077

Keywords:

Navigation