Skip to main content
Log in

Effects of Gonadotropin-Releasing Hormone Analogue Surfagon on Pain Sensitivity in Rats

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

We investigated the effects of the synthetic gonadotropin-releasing hormone agonistic analogue surfagon on the spinal and supraspinal mechnisms of pain formation in intact and gonadectomized male Wistar rats. Alternating current painful stimulation was applied to the tail base, and pain thresholds, as well as emotional/affective responses, were recorded (in mA). Surfagon, when administred intraperitoneally 12 min before the experiments at doses 0.004–150 µg/kg, exerted an algic effect and enhanced pain-induced emotional/affective behavior in the electrocutaneous tail stimulation test. In gonadectomized rats, pain thresholds were elevated on day 12 after castration. Surfagon administration to castrated rats retained the direction of the effects observed in intact animals, indicating their steroid-independent nature. The obtained data demonstrate the presence of both spinal and supraspinal mechanisms of surfagon algic activity in rats during electrocutaneous pain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Masalova OO, Kazakova SB, Savateeva-Lyubimova TN, Sivak KV, Sapronov NS, Shabanov PD (2019) Effect of Surfagon on Open Field and Elevated Plus Maze Behavior of Gonadectomized and Non-Gonadectomized Male Rats. Bull Exp Biol Med 168(1): 52–54. https://doi.org/10.1007/s10517-019-04644-4

    Article  CAS  PubMed  Google Scholar 

  2. Severianova LA, Bobyntsev II (1995) Neurotropic effects of an luliberin analog administered intraventricularly to rats with varying sensitivity to ethanol. Bull Exp Biol Med 119(2): 120–123. https://doi.org/10.1007/BF02445854

    Article  Google Scholar 

  3. Bobyntsev II, Sever'yanova LA, Kryukov AA (2006) Effect of gonadotropin-releasing hormone analogue on thermal nociception in mice. Bull Exp Biol Med 141(2): 193–196. https://doi.org/10.1007/s10517-006-0125-0

    Article  CAS  PubMed  Google Scholar 

  4. Della Corte L, Barra F, Mercorio A, Evangelisti G, Rapisarda AMC, Ferrero S, Bifulco G, Giampaolino P (2020) Tolerability considerations for gonadotropin-releasing hormone analogues for endometriosis. Expert Opin Drug Metab Toxicol 16(9):759–768. https://doi.org/10.1080/17425255.2020.1789591

    Article  CAS  PubMed  Google Scholar 

  5. Rossi L, Pagani O (2018) The role of gonadotropin-releasing-hormone analogues in the treatment of breast cancer. J Womens Health (Larchmt) 27(4):466–475. https://doi.org/10.1089/jwh.2017.6355

  6. Ortmann O, Weiss JM, Diedrich K (2002) Gonadotrophin-releasing hormone (GnRH) and GnRH agonists: mechanisms of action. Reprod Biomed Online 5(1):1–7. https://doi.org/10.1016/s1472-6483(11)60210-1

    Article  PubMed  Google Scholar 

  7. Bereket A (2017) A critical appraisal of the effect of gonadotropin-releasing hormon analog treatment on adult height of girls with central precocious puberty. J Clin Res Pediatr Endocrinol 9(2):33–48. https://doi.org/10.4274/jcrpe.2017.S004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Konda Y, Gantz I, DelValle J, Shimoto Y, Miwa H, Yamada T (1994) Interaction of dual intracellular signaling pathways activated by the melanocortin-3 receptor. J Biol Chem 269(18): 13162–13166.

    Article  CAS  Google Scholar 

  9. Buggy JJ (1998) Binding of alpha-melanocyte-stimulating hormone to its G-protein-coupled receptor on B-lymphocytes activates the Jak/STAT pathway. Biochem J 331(Pt 1): 211–226. https://doi.org/10.1042/bj3310211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voronina TA, Guzevatykh LS (2012) Methodological recommendations for the study of analgesic activity of drugs. 197–218. In: Mironov AN (ed) Guidelines for conducting preclinical studies of medicines, Vol 1. Grif and K, M. 197–218. (In Russ).

    Google Scholar 

  11. Severyanova LA, Lazarenko VA, Plotnikov DV, Dolgintsev ME, Kriukov AA (2019) L-Lysine as the molecule influencing selective brain activity in pain-induced behavior of rats. Int J Mol Sci 20(8): 1899. doi:10.3390/ijms20081899https://doi.org/10.3390/ijms20081899

    Article  CAS  PubMed Central  Google Scholar 

  12. Zieglgänsberger W (2019) Substance P and pain chronicity. Cell Tissue Res 375(1):227–241. https://doi.org/10.1152/10.1007/s00441-018-2922-y

    Article  PubMed  Google Scholar 

  13. Treede RD, Margel W (1995) Modern concepts of pain and hyperalgesia beyond the polymodal C-nociceptor. Physiology 10(5): 216–228. https://doi.org/10.1152/physiologyonline.1995.10.5.216

    Article  Google Scholar 

  14. Harris JA, Faust B, Gondin AB, Dämgen MA, Suomivuori CM, Veldhuis NA, Cheng Y, Dror RO, Thal DM, Manglik A (2021) Selective G protein signaling driven by substance P-neurokinin receptor dynamics. Nat Chem Biol 18:109-115. https://doi.org/10.1038/s41589-021-00890-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koroleva SV, Nikolaeva AA, Ashmarin IP (2012) Types of bioinformatic programs in the continuum of regulatory peptides and non-peptide mediators. Traits of interaction of dopamine and serotonin systems. Neurochem J 6(2): 132–143.

    Article  CAS  Google Scholar 

  16. Severyanova LA, Bobyntsev II, Plotnikov DV, Lyashev YD (2001) Nitric oxide synthesis in the brain mediates neuro-peptide effects on pain sensitivity and pain-induced aggression. Analgesia 5(3/4): 223–237.

    Google Scholar 

  17. Jennes L, Conn PM (1994) Gonadotropin-releasing hormone and its receptors in rat brain. Front Neuroendocrinol 15(1): 51–77. https://doi.org/10.1006/frne.1994.1003

    Article  CAS  PubMed  Google Scholar 

  18. Jennes L, Eyigor O, Janovick JA, Conn PM (1997) Brain gonadotropin releasing hormone receptors: localization and regulation. Recent Prog Horm Res 52: 475–491.

    CAS  PubMed  Google Scholar 

  19. Leblanc P, Crumeyrolle M, Latouche J, Jordan D, Fillion G, L’Heritier A, Kordon C, Dussaillant M, Rostène W, Haour F (1988) Characterization and distribution of receptors for gonadotropin-releasing hormone in the rat hippocampus. Neuroendocrinology 48(5): 482–488. https://doi.org/10.1159/000125053

    Article  CAS  PubMed  Google Scholar 

  20. Nayebi AR, Ahmadiani A (1999) Involvement of the spinal serotonergic system in analgesia produced by castration. Pharmacol Biochem Behav 64(3):467–471. https://doi.org/10.1016/s0091-3057(99)00113-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Kursk State Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (I.I.B.); data collection and processing, statistical analysis (A.O.V., M.E.D., A.A.K.); writing a manuscript (I.I.B., M.E.D.).

Corresponding author

Correspondence to I. I. Bobyntsev.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 1, pp. 121–128https://doi.org/10.31857/S0869813922010034.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobyntsev, I.I., Vorvul, A.O., Dolgintsev, M.E. et al. Effects of Gonadotropin-Releasing Hormone Analogue Surfagon on Pain Sensitivity in Rats. J Evol Biochem Phys 58, 167–173 (2022). https://doi.org/10.1134/S002209302201015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302201015X

Keywords:

Navigation