Skip to main content
Log in

Role of LIM Kinase 1 in Dopaminergic and Serotonergic Neurons in Genome Stability, Learning and Memory during Stress Response to Weakening of Earth’s Magnetic Field in Drosophila

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The paper continues the cycle of studies on the evolutionary link between the mechanisms of stress response formation and cognitive functions started in 1959 by M.E. Lobashev and V.B. Savvateev. We explore the role of a key neuroplasticity factor LIM kinase 1 (LIMK1) expressed in dopaminergic and serotonergic neurons in Drosophila genome stability, as well as learning and memory, both in standard conditions and when an organism exhibits a stress response to Earth’s weakened static magnetic field (WSMF). We demonstrate that a low LIMK1 level promotes learning acquisition, but not the formation of intermediate-term memory; at the same time, stress exposure restores the learning ability and memory formation in the Drosophila strain with an increased LIMK1 content. We identify inter-strain differences in the frequency of DNA double-strand breaks (DSBs) and show an increase in DSBs after the exposure to WSMF. The data obtained reveal the role of dopaminergic and serotonergic neurons not only in cognitive functions, but also as WSMF targets in the development of a stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lobashev ME, Savvateev VB (1959) Physiology of Circadian Rhythms. Nauka, M; L (In Russ).

    Google Scholar 

  2. Zatsepina OG, Nikitina EA, Shilova VY, Chuvakova LN, Sorokina S, Vorontsova JE, Tokmacheva EV, Funikov SY, Rezvykh AP, Evgen’ev MB (2021) Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress and Chaperones 26 (3): 575–594. https://doi.org/10.1007/s12192-021-01203-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nikitina EA, Medvedeva AV, Zakharov GA, Savvateeva-Popova EV (2014) The Drosophila agnostic locus: involvement into formation of cognitive defects in William’s syndrome. Acta Naturae 6(2): 53–61. https://doi.org/10.32607/20758251-2014-6-2-53-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medvedeva AV, Molotkov DA, Nikitina EA, Popov AV, Karagodin DA, Baricheva EM, Savvateeva-Popova EV (2008) Systemic regulation of genetic and cytogenetic processes by a signal cascade of actin remodeling: locus agnostic in Drosophila. Russ J Genetics 44(6): 771–83. https://doi.org/10.1134/S1022795408060069

    Article  CAS  Google Scholar 

  5. Misu S, Takebayashi M, Kei M (2017) Nuclear actin in development and transcriptional reprogramming. Front Genet 8: 27. https://doi.org/10.3389/fgene.2017.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nikitina EA, Kaminskaya AN, Molotkov DA, Savvateeva-Popova EV, Popov AV (2014) Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of limk1 in Drosophila melanogaster males with altered structure of the limk1 gene. Journal of Evolutionary Biochemistry and Physiology 50(2): 154–166. https://doi.org/10.1134/S0022093014020082

    Article  CAS  Google Scholar 

  7. Vasilieva SA, Tokmacheva EV, Medvedeva AV, Ermilova AA, Nikitina EA, Shchegolev BF, Surma SV, Savvateeva-Popova ЕV (2020) The role of parental origin of chromosomes in the instability of the somatic genome in Drosophila brain cells and memory trace formation in norm and stress. Cell and Tissue Biology 14(3): 178–189. https://doi.org/10.1134/S1990519X20030074

    Article  Google Scholar 

  8. Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D (2016) Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 14(1): 88. https://doi.org/10.1186/s12915-016-0290-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCausland HC, Komeili A (2020) Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet 16(2): e1008499. https://doi.org/10.1371/journal.pgen.1008499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erdmann W, Idzikowski B, Kowalski W, Szymański B, Kosicki JZ, Kaczmarek L (2017) Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field? PLoS One 12(9): e0183380. https://doi.org/10.1371/journal.pone.0183380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikitina ЕА, Мedvedeva AV, Gerasimenko MS, Pronikov VS, Surma SV, Shchegolev BF, Savvateeva-Popova EV (2017) Weakened geomagnetic field: impact on transcriptional activity of the genome, learning and memory formation in Dr. melanogaster. Zhurnal VND 67(2): 246–256. https://doi.org/10.7868/S0044467717020101

    Article  Google Scholar 

  12. Wu JS, Luo L (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat protoc 1: 2110–2115. https://doi.org/10.1038/nprot.2006.336

    Article  CAS  PubMed  Google Scholar 

  13. Kamyshev NG, Iliadi KG, Bragina JV (1999) Drosophila conditioned courtship: Two ways of testing memory. Learn Mem Cold Spring Harb 6: 1–20.

    Article  CAS  Google Scholar 

  14. Trouillon R, Ewing AG (2014) Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol 9(3): 812–820. https://doi.org/10.1021/cb400665f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rehmani N, Zafar A, Arif H, Hadi SM, Wani AA (2017) Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism. Toxicol In Vitro. 40: 336–346. https://doi.org/10.1016/j.tiv.2017.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spivak IM, Kuranova ML, Mavropulo-Stolyarenko GR, Surma SV, Shchegolеv BF, Stefanov VE (2016) Response to extremely weak static magnetic fields. Biophysics 61(3): 435–439.

    Article  CAS  Google Scholar 

  17. Ou S, Tan MH, Weng T, Li HY, Koh CG (2018) LIM kinase1 regulates mitotic centrosome integrity via its activity on dynein light intermediate chains. Open Biol. 8:170202. https://doi.org/10.1098/rsob.170202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Estrem C, Moore JK (2020) Help or hindrance: how do microtubule-based forces contribute to genome damage and repair? Current Genetics 66: 303–311. https://doi.org/10.1007/s00294-019-01033-2

    Article  CAS  PubMed  Google Scholar 

  19. Caridi CP, Plessner M, Grosse R, Chiolo I (2019) Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 21(9): 1068–1077. https://doi.org/10.1038/s41556-019-0379-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heo J (2011) Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 14: 689–724. https://doi.org/10.1089/ars.2009.2984

    Article  CAS  PubMed  Google Scholar 

  21. Zaharov GA (2012) Molecular-genetic research on the role of the components of the signal cacde of actin remodeling 9n genesis of behavioral impairments in Drosophila melanogaster. PhD Theses (in Russ).

    Google Scholar 

  22. Coballase-Urrutia E, Navarro L, Ortiz JL, Verdugo-Díaz L, Gallardo JM, Hernández ME, Estrada-Rojo F (2018) Static Magnetic Fields Modulate the Response of Different Oxidative Stress Markers in a Restraint Stress Model Animal. Biomed Res Int 2018: 3960408. https://doi.org/10.1155/2018/3960408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using raclopride. Journal of Neuroscience 24(11): 2825–2831. https://doi.org/10.1523/JNEUROSCI.3422-03.2004

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Soosairajah J, Harari D, Citri A, Price J, Ng HL, Morton CJ, Parker MW, Yarden Y, Bernard O (2006) Hsp90 increases LIM kinase activity by promoting its homo-dimerization. FASEB J 20(8):1218–1220. https://doi.org/10.1096/fj.05-5258fje

    Article  CAS  PubMed  Google Scholar 

  25. Karki N, Vergish S, Zoltowski BD (2021) Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Sci 30(8): 1521–1534. https://doi.org/10.1002/pro.4124

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the State Program RF 47 SP “Scientific and Technological Development of the Russian Federation” (2019–2030) (theme no. 63.1) and the Russian Foundation for Basic Research (RFBR) grant no. 20-015-00300A.

Author information

Authors and Affiliations

Authors

Contributions

Basic idea and experimental design (E.A.N., A.V.M.); data processing, writing a manuscript (A.V.M.); problem posing, goal setting, selection of scientific literature (E.A.N.); behavioral experiments (E.S.Z., S.K.T.), S.A.V.); cytogenetic experiments (E.V.T., A.V.R.); preparing a manuscript (S.A.V.); data processing, experimental design (B.F.S.); supervision, writing a manuscript (E.V.S.-P.).

Corresponding author

Correspondence to E. V. Savvateeva-Popova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 1, pp. 34–42https://doi.org/10.31857/S0044452922010041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, A.V., Rebrova, A.V., Zalomaeva, E.S. et al. Role of LIM Kinase 1 in Dopaminergic and Serotonergic Neurons in Genome Stability, Learning and Memory during Stress Response to Weakening of Earth’s Magnetic Field in Drosophila. J Evol Biochem Phys 58, 35–44 (2022). https://doi.org/10.1134/S0022093022010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022010033

Keywords:

Navigation