Skip to main content
Log in

Photochromic Modulation of Cys-loop Ligand-gated Ion Channels

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Advances in molecular and cellular biology, as well as the development of chemical synthesis and modern technologies, enriched the contemporary experimental research with new directions in which light plays a key role as a tool for modulating biological functions. One of them is photopharmacology, a field that uses chemically synthesized light-controlled compounds that can modulate the functions of proteins. When illuminated at specific wavelengths, these synthetic photoswitches are capable of modulating functions of receptors, ion channels and enzymes. This review briefly describes compounds that modulate the functions of ionotropic Cys-loop receptors for acetylcholine, GABA, and glycine. The nicotinic acetylcholine receptor (nAChR) is the first receptor-operated channel for which a way of modulation using light-dependent molecules has been discovered. In the 1970s–80s, blockers and activators of nAChR were created, consisting of azobenzene (light-controlled switch) and agonists. In the current millennium, new compounds have been created to provide light-controlled modulation of nAChR activity. These new photochromes are selective to muscle and neuronal nAChR, and are promising to study the physiological role of nAChRs in the nervous system. An extensive library of photochromic compounds is available for light-controlling of GABA receptor function. Some of them modulate the activity via interaction with the agonist site, the others are light-controlled blockers of chloride-selective ion channels. Recently, the first two photochromic modulators of glycine receptor activity have also been developed. These achievements demonstrate that photopharmacology opens up unique possibilities for remote control of physiological functions, as well as for studying the processes of inhibition and excitation in neural networks and models of neuronal pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

nAChR:

nicotinic acetylcholine receptor

GABA:

gamma-aminobutyric acid

GABAR:

gamma-aminobutyric acid receptor

5-HT3P:

serotonin receptor

TM domain:

transmembrane domain

Azo-Ch:

azocholine

CNS:

central nervous system

HEK cells:

human embryonic kidney cells

UV:

ultraviolet

REFERENCES

  1. Magazanik, L.G., On the mechanism of desensitization of the muscle fiber postsynaptic membrane, Biofizika, 1968, vol. 13(1), pp. 199–202.

  2. Magazanik, L.G. and Nasledov, G.A., Desensitization to acetylcholine of frog tonic muscle fibres, Nature, 1970, vol. 226(5243), pp. 370–371.

  3. Magazanik, L.G. and Vyskocit, F., The effect of temperature on desensitization kinetics at the post-synaptic membrane of the frog muscle fibre, J. Physiol., 1975, vol. 249(2), pp. 285–300.

  4. Magazanik, L.G., Snetkov, V.A., Giniatullin, R.A., and Khazipov, R.N., Changes in the time course of miniature endplate currents induced by bath-applied acetylcholine, Neurosci. Lett., 1990, vol. 113(3), pp. 281–285.

  5. Giniatullin, R.A. and Magazanik, L.G., Desensitization of the post-synaptic membrane of neuromuscular synapses induced by spontaneous quantum secretion of mediator, Neurosci Behav. Physiol., 1998, vol. 28(4), pp. 438–442.

  6. Magazanik, L.G., Functional properties of postjunctional membrane, Annu. Rev. Pharmacol. Toxicol., 1976, vol. 16(1), pp. 161–175.

  7. Magazanik, L.G., Blockade of ion channels as an approach to studying AMPA receptor subtypes, Neurosci. Behav. Physiol., 2000, vol. 30(1), pp. 27–35.

  8. Tikhonov, D.B. and Magazanik, L.G., Origin and molecular evolution of ionotropic glutamate receptors, Russ. J. Physiol., 2008, vol. 94(9), pp. 989–1004.

  9. Kalemenev, S.V., Zubareva, O.E., Lukomskaya, N.Y., and Magazanik, L.G., Neuroprotective effect of noncompetitive NMDA receptor antagonists IEM-1957 and memantine in experimental focal cerebral ischemia, Dokl. Biol. Sci., 2012, vol. 443(1), pp. 78–80.

  10. Vataev, S.I., Oganesian, G.A., Lukomskaia, N., and Magazanik, L.G., The action of ionotropic glutamate receptor channel blockers on effects of sleep deprivation in rats, Russ. J. Physiol., 2013, vol. 99(5), pp. 575–585.

  11. Malkin, S.L., Kim, K.K., Tikhonov, D.B., Magazanik, L.G., and Zaitsev, A.V., Statistical models suggest presence of two distinct subpopulations of miniature EPSCs in fast-spiking interneurons of rat prefrontal cortex, Neuroscience, 2015, vol. 301, pp. 508–519. https://doi.org//10.1016/j.neuroscience.2015.06.034

  12. Chizhov, A.V., Amakhin, D.V., Zaizev, A.V., and Magazanik, L.G., AMPAR-mediated interictal discharges in neurons of entorhinal cortex: experiment and model, Dokl. Biol. Sci., 2018, vol. 479(1), pp. 47–50. https://doi.org/10.1134/S0012496618020011

  13. Bregestovski, P., Maleeva, G., and Gorostiza, P., Light-induced regulation of ligand-gated channel activity, Br. J. Pharmacol., 2018, vol. 175(11), pp. 1892–1902. https://doi.org/10.1111/bph.14022

  14. Lin, W.C., Tsai, M.C., Rajappa, R., and Kramer, R.H., Design of a highly bistable photoswitchable tethered ligand for rapid and sustained manipulation of neurotransmission, J. Am. Chem. Soc., 2018, vol. 140(24), pp. 7445–7448. https://doi.org/10.1021/jacs.8b03942

  15. Deisseroth, K., Optogenetics, Nat. Methods, 2011, vol. 8(1), pp. 26–29. https://doi.org/10.1038/nmeth.f.324

  16. Kim, C.K., Adhikari, A., and Deisseroth, K., Integration of optogenetics with complementary methodologies in systems neuroscience, Nat. Rev. Neurosci., 2017, vol. 18(4), pp. 222–235. https://doi.org/10.1038/nrn.2017.15

  17. Gorostiza, P. and Isacoff, E.Y., Optical switches for remote and noninvasive control of cell signaling, Science, 2008, vol. 322(5900), pp. 395–399. https://doi.org/10.1126/science.1166022

  18. Bregestovski, P., Waseem, T., and Mukhtarov, M., Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity, Front Mol. Neurosci., 2009, vol. 2(15). https://doi.org/10.3389/neuro.02.015.2009

  19. Suzuki, J., Kanemaru, K., and Iino, M., Genetically encoded fluorescent indicators for organellar calcium imaging, Biophys. J., 2016, vol. 111(6), pp. 1119–1131. https://doi.org/10.1016/j.bpj.2016.04.054

  20. Imamura, H., Nhat, K.P.H., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y., Nagai, T., and Noji, H., Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators, Proc. Natl. Acad. Sci. USA, 2009, vol. 106(37), pp. 15651–15656. https://doi.org/10.1073/pnas.0904764106

  21. Berg, J., Hung, Y.P., and Yellen, G., A genetically encoded fluorescent reporter of ATP: ADP ratio, Nat. Methods, 2009, vol. 6(2), pp. 161–166. https://doi.org/10.1038/nmeth.1288

  22. Schumacher, C.H., Korschen, H.G., Nicol, C., Gasser, C., Seifert, R. Schwarzel, M., and Moglich, A., A fluorometric activity assay for light-regulated cyclic-nucleotide-monophosphate actuators, Methods. Mol. Biol., 2016, vol. 1408, pp. 93–105. https://doi.org/10.1007/978-1-4939-3512-3_7

  23. Wojtovich, A.P. and Foster, T.H., Optogenetic control of ROS production. Redox. Biol., 2014, vol. 2, pp. 368–376. https://doi.org/10.1016/j.redox.2014.01.019

  24. Bilan, D.S., Pase, L., Joosen, L., Gorokhovatsky, A.Y., Ermakova, Y.G., Gadella, T., Grabher, C., Schultz, C., Lukyanov, S., and Belousov, V.V., HyPer-3: a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging, ACS Chem. Biol., 2013, vol. 8(3), pp. 535–542. https://doi.org/10.1021/cb300625g

  25. Covington, H.E., Lobo, M.K., Maze, I., Vialou, V., Hyman, J.M., Zaman, S., LaPlant, Q., Mouzon, E., Ghose, S., Tamminga, C.A., Neve, R.L., Deisseroth, K., and Nestler, E.J., Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex, J. Neurosci., 2010, vol. 30(48), pp. 16082–16090. https://doi.org/10.1523/JNEUROSCI.1731-10.2010

  26. Haubensak, W., Kunwar, P.S., Cai, H., Ciocchi, S., Wall, N.R., Ponnusamy, R., Biag, J., Dong, H., Deisseroth, K., Callaway, E.M., Fanselow, M.S., Luthi, A., and Anderson, D.J., Genetic dissection of an amygdala microcircuit that gates conditioned fear, Nature, 2010, vol. 468(7321), pp. 270–276. https://doi.org/10.1038/nature09553

  27. Velema, A., Szymanski, W., and Feringa, B.L. Photopharmacology: beyond proof of Principle, J. American. Chem. Soc., 2014, vol. 136(6), pp. 2178–2191. https://doi.org/10.1021/ja413063e

  28. Mitscherlich, E., Uber das stickstoffbenzid, Ann. der Physik., 1834, vol. 108(15), pp. 225–227.

  29. Hartley, G.S., The cis-form of azobenzene, Nature, 1937, vol. 140(3537), pp. 281–281.

  30. Merino, E. and Ribagorda, M., Control over molecular motion using the cis–trans photoisomerization of the azo group, Beilstein J. Org. Chem., 2012, vol. 8(1), pp. 1071–1090. https://doi.org/10.3762/bjoc.8.119

  31. Koshima, H., Ojima, N., and Uchimoto, H., Mechanical motion of azobenzene crystals upon photoirradiation, J. Am. Chem. Soc., 2009, vol. 131(20), pp. 6890–6891. https://doi.org/10.1021/ja8098596

  32. Irie, M., Diarylethenes for memories and switches, Chem. Rev., 2000, vol. 100(5), pp. 1685–1716. https://doi.org/10.1021/cr980069d

  33. Lubbe, A.S., Szymanski, W., and Feringa, B.L., Recent developments in reversible photoregulation of oligonucleotide structure and function, Chem. Soc. Rev., 2017, vol. 46(4), pp. 1052–1079. https://doi.org/10.1039/c6cs00461j

  34. Klajn, R., Spiropyran-based dynamic materials, Chem. Soc. Rev., 2014, vol. 43(1), pp. 148–184. https://doi.org/10.1039/c3cs60181a.

  35. Lin, W.C. and Kramer, R.H., Light-Switchable Ion Channels and Receptors for Optogenetic Interrogation of Neuronal Signaling, Bioconjug. Chem., 2018, vol. 29(4), pp. 861–869. https://doi.org/10.1021/acs.bioconjchem.7b00803

  36. Fortin, D.L., Dunn, T.W., Fedorchak, A., Allen, D., Montpetit, R., Banghart, M.R., Trauner, D., Adelman, J.P., and Kramer, R.H., Optogenetic photochemical control of designer K+ channels in mammalian neurons, J. Neurophysiol., 2011, vol. 106(1), pp. 488–496. https://doi.org/10.1152/jn.00251.2011

  37. Leippe, P., Winter, N., Sumser, M.P., and Trauner, D., Optical control of a delayed rectifier and a two-pore potassium channel with a photoswitchable bupivacaine, ACS Chem. Neurosci., 2018, vol. 9(12), pp. 2886–2891. https://doi.org/10.1021/acschemneuro.8b00279

  38. Trads, J.B., Hull, K., Matsuura, B.S., Laprell, L., Fehrentz, T., Gorldt, N., Kozek, K.A., Weaver, C.D., Klocker, N., Barber, D.M., and Trauner, D., Sign inversion in photopharmacology: Incorporation of cyclic azobenzenes in photoswitchable potassium channel blockers and openers, Angew, Chem. Int. Ed. Engl., 2019, vol. 58(43), pp. 15421–15428. https://doi.org/10.1002/anie.201905790

  39. Volgraf, M., Gorostiza, P., Numano, R., Kramer, R.H., Isacoff, E.Y., and Trauner, D., Allosteric control of an ionotropic glutamate receptor with an optical switch, Nat. Chem. Biol., 2006, vol. 2(1), pp. 47–52. https://doi.org/10.1038/nchembio756

  40. Gorostiza, P., Volgraf, M., Numano, R., Szobota, S., Trauner, D., and Isacoff, E.Y., Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor, Proc. Natl. Acad. Sci., 2007, vol. 104(26), pp. 10865–10870. https://doi.org/10.1073/pnas.0701274104

  41. Laprell, L., Repak, E., Franckevicius, V., Hartrampf, F., Terhag, J., Hollmann, M., Sumser, M., Rebola, N., DiGregorio, D.A., and Trauner, D., Optical control of NMDA receptors with a diffusible photoswitch, Nat. Commun., 2015, vol. 6(1), pp. 1–11. https://doi.org/10.1038/ncomms9076

  42. Donthamsetti, P.C., Winter, N., Schonberger, M., Levitz, J., Stanley, C., Javitch, J.A., Isacoff, E.Y., and Trauner, D., Optical control of dopamine receptors using a photoswitchable tethered inverse agonist, J. Am. Chem. Soc., 2017, vol. 139(51), pp. 18522–18535. https://doi.org/10.1021/jacs.7b07659

  43. Lemoine, D., Habermacher, C., Martz, A., Mery, P.F., Bouquier, N., Diverchy, F., Taly, A., Rassendren, F., Specht, A., and Grutter, T., Optical control of an ion channel gate, Proc. Natl. Acad. Sci. USA (2013, vol. 110(51), pp. 20813–20818. https://doi.org/10.1073/pnas.1318715110

  44. Tochitsky, I., Banghart, M.R., Mourot, A., Yao, J.Z., Gaub, B., Kramer, R.H., and Trauner, D., Optochemical, control of genetically engineered neuronal nicotinic acetylcholine receptors, Nat. Chem., 2012, vol. 4(2), pp. 105–111. https://doi.org/10.1038/nchem.1234

  45. Stein, M., Middendorp, S.J., Carta, V., Pejo, E., Raines, D.E., Forman, S.A., Sigel, E., and Trauner, D., Azo-propofols: photochromic potentiators of GABAA receptors, Angew. Chem. Int. Ed. Engl., 2012, vol. 51(42), pp. 10500–10504. https://doi.org/10.1002/anie.201205475

  46. Yue, L., Pawlowski, M., Dellal, S.S., Xie, A., Feng, F., Otis, T.S., Bruzik, K.S., Qian, H., and Pepperberg, D.R., Robust photoregulation of GABA A receptors by allosteric modulation with a propofol analogue, Nat. Commun., 2012, vol. 3(1), pp. 1–12. https://doi.org/10.1038/ncomms2094

  47. Maleeva, G., Wutz, D., Rustler, K., Nin-Hill, A., Rovira, C., Petukhova, E., Bautista-Barrufet, A., Gomila-Juaneda, A., Scholze, P., Peiretti, F., Alfonso-Prieto, M., Konig, B., Gorostiza, P., and Bregestovski, P., A photoswitchable GABA receptor channel blocker, Br. J. Pharmacol., 2019, vol. 176(15), pp. 2661–267. https://doi.org/10.1111/bph.14689

  48. Rustler, K., Maleeva, G., Gomila, A.M., Gorostiza, P., Bregestovski, P., and Konig, B., Optical Control of GABAA Receptors with a Fulgimide-Based Potentiator, Chemistry, 2020, vol. 26(56), pp. 12722–12727. https://doi.org/10.1002/chem.202000710

  49. Maleeva, G., Nin-Hill, A., Rustler, K., Petukhova, E., Ponomareva, D., Mukhametova, E., Gomila-Juaneda, A., Wutz, D., Alfonso-Prieto, M., Konig, B., Gorostiza, P., and Bregestovski, P., Subunitspecific photocontrol of glycine receptors by azobenzene-nitrazepam photoswitcher, eNeuro, 2021, vol. 8(1). https://doi.org/10.1523/ENEURO.0294-20.2020

  50. Gomila, A.M., Rustler, K., Maleeva, G., Nin-Hill, A., Wutz, D., Bautista-Barrufet, A., Rovira, X., Bosch, M., Mukhametova, E., Petukhiva, E., Ponomareva, D., Mukhamedyarov, M., Peiretti, F., Alfonso-Prieto, M., Rovira, C., Konig, B., Bregestovski, P., and Gorostiza, P., Photocontrol of endogenous glycine receptors in vivo, Cell. Chem. Biol., 2020, vol. 27(11), pp. 1425–1433. https://doi.org/10.1016/j.chembiol.2020.08.005

  51. Thompson, A.J., Lester, H.A., and Lummis, S.C., The structural basis of function in Cys-loop receptors, Q Rev. Biophys., 2010, vol. 43(4), pp. 449–499. https://doi.org/10.1017/S0033583510000168

  52. Ortells, M.O. and Lunt, G.G., Evolutionary history of the ligand-gated ion-channel superfamily of receptors, Trends Neurosci., 1995, vol. 18(3), pp. 121–127. https://doi.org/10.1016/0166-2236(95)93887-4

  53. Karlin, A. and Akabas, M.H., Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins, Neuron, 1995, vol. 15(6), pp. 1231–1244.

  54. Vulfius, C.A., α7-subtype of neuronal nicotinic acetylcholine receptors: structure, properties, distribution, functions, Biol. Membr., 2006, vol. 23(2), pp. 111–118.

  55. Maleeva, G.V. and Bregestovski, P.D., Molecular physiology of glycine receptors in nervous system of vertebrates, Russ. J. Physiol., 2014, vol. 100(3), pp. 274–300.

  56. Millar, N.S. and Gotti, C., Diversity of vertebrate nicotinic acetylcholine receptors, Neuropharmacology, 2009, vol. 56(1), pp. 237–246. https://doi.org/10.1016/j.neuropharm.2008.07.041

  57. Karlin, A., Emerging structure of the nicotinic acetylcholine receptors, Nat. Rev. Neurosci., 2002, vol. 3(2), pp. 102–114. https://doi.org/10.1038/nrn731

  58. Changeux, J.P., The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily, J. Biol. Chem., 2012, vol. 287(48), pp. 40207–40215. https://doi.org/10.1074/jbc.R112.407668

  59. Miledi, R., Junctional and extrajunctional acetylcholine receptors in skeletal muscle fibres, J. Physiol., 1960, vol. 151(1), pp. 24–30.

  60. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., and Sakmann, B., Molecular distinction between fetal and adult forms of muscle acetylcholine receptor, Nature, 1986, vol. 321(6068), pp. 406–411.

  61. Hall, Z.W. and Sanes, J.R., Synaptic structure and development: the neuromuscular junction, Cell, 1993, vol. 72, pp. 99–121.

  62. McGehee, D.S. and Role, L.W., Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons, Annu. Rev. Physiol., 1995, vol. 57(1), pp. 521–546.

  63. Kalamida, D., Poulas, K., Avramopoulou, V., Fostieri, E., Lagoumintzis, G., Lazaridis, K., Sideri, A., Zouridakis, M., and Tzartos, S.J., Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity, FEBS J., 2007, vol. 274(15), pp. 3799–3845. https://doi.org/10.1111/j.1742-4658.2007.05935.x

  64. Gotti, C., Zoli, M., and Clementi, F., Brain nicotinic acetylcholine receptors: native subtypes and their relevance, Trends Pharmacol. Sci., 2006, vol. 27(9), pp. 482–491. https://doi.org/10.1016/j.tips.2006.07.004

  65. Hogg, R.C., Raggenbass, M., and Bertrand, D., Nicotinic acetylcholine receptors: from structure to brain function, Rev. Physiol. Biochem. Pharmacol., 2003, vol. 147, pp. 1–46. https://doi.org/10.1007/s10254-003-0005-1

  66. Benowitz, N.L., Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics, Annu. Rev. Pharmacol. Toxicol., 2009, vol. 49, pp. 57–71. https://doi.org/10.1146/annurev.pharmtox.48.113006.094742

  67. Dani, J.A. and De Biasi, M., Mesolimbic dopamine and habenulo-interpeduncular pathways in nicotine withdrawal, Cold Spring Harb. Perspect. Med., 2013, vol. 3(6), p. a012138. https://doi.org/10.1101/cshperspect.a012138

  68. Posadas, I., Lopez-Hernandez, B., and Cena, V., Nicotinic receptors in neurodegeneration, Curr. Neuropharmacol., 2013, vol. 11(3), pp. 298–314. https://doi.org/10.2174/1570159X11311030005

  69. Deal, W.J., Erlanger, B.F., and Nachmansohn, D., Photoregulation of biological activity by photochromic reagents, III. Photoregulation of bioelectricity by acetylcholine receptor inhibitors, Proc. Natl. Acad. Sci. USA, 1969, vol. 64(4), pp. 1230–1234. https://doi.org/10.1073/pnas.64.4.1230

  70. Conti-Tronconi, B.M., Hunkapiller, M.W., Lindstrom, J.M., and Raftery, M.A., Subunit structure of the acetylcholine receptor from Electrophorus electricus, Proc. Natl. Acad. Sci. USA, 1982, vol. 79(21), pp. 6489–6493.

  71. Bartels, E., Wassermann, N.H., and Erlanger, B.F., Photochromic activators of the acetylcholine receptor, Proc. Natl. Acad. Sci. USA, 1971, vol. 68(8), pp. 1820–1823.

  72. Damijonaitis, A., Broichhagen, J., Urushima, T., Hull, K., Nagpal, J., Laprell, L., Schonberger, M., Woodmansee, D.H., Rafiq, A., Sumser, M.P., Kummer, W., Gottschalk, A., and Kummer, W., Azo-Choline enables optical control of alpha 7 nicotinic acetylcholine receptors in neural networks, ACS Chem. Neurosci., 2015, vol. 6 (5), pp. 701–707. https://doi.org/10.1021/acschemneuro.5b00030

  73. Karlin, A., Chemical modification of the active site of the acetylcholine receptor, J. Gen. Physiol., 1969, vol. 54(1), pp. 245–264.

  74. Bregestovski, P.D., Iljin, V.I., Jurchenko, O.P., Veprintsev, B.N., and Vulfius, C.A., Acetylcholine receptor conformational transition on excitation masks disulphide bonds against reduction, Nature, 1977, vol. 270(5632), pp. 71–73.

  75. Sheridan, R.E. and Lester, H.A., Functional stoichiometry at the nicotinic receptor. The photon cross section for phase 1 corresponds to two bis-Q molecules per channel, J. Gen. Physiol., 1982, vol. 80(4), pp. 499–515.

  76. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H., and Erlanger, B.F., A covalently bound photoisomerisable agonist. Comparison with reversibly bound agonists at Electrophorus electroplaques, J. Gen. Physiol., 1980, vol. 75(2), pp. 207–232.

  77. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H., and Erlanger, B.F., Light-activated drug confirms a mechanism of ion channel blockade, Nature, 1979, vol. 280(5722), pp. 509–510.

  78. Krouse, M.E., Lester, H.A., Wassermann, N.H., and Erlanger, B.F., Rates and equilibria for a photoisomerizable antagonist at the acetylcholine receptor of Electrophorus electroplaques, J. Gen. Physiol., 1985, vol. 86(2), pp. 235–256.

  79. Chabala, L.D., Gurney, A.M., and Lester, H.A., Dose-response of acetylcholine receptor channels opened by a flash-activated agonist in voltage-clamped rat myoballs, J. Physiol., 1986, vol. 371(1), pp. 407–433.

  80. Celie, P.H., van Rossum-Fikkert, S.E., van Dijk, W.J., Brejc, K., Smit, A.B., and Sixma, T.K., Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures, Neuron, 2004, vol. 41(6), pp. 907–914. https://doi.org/10.1016/s0896-6273(04)00115-1

  81. Sieghart, W., Structure and pharmacology of g-aminobutyric acid A receptor subtypes, Pharmacol. Rev., 1995, vol. 47, pp. 181–234.

  82. Knoflach, F., Hernandez, M.C., and Bertrand, D., GABAA receptor-mediated neurotransmission: Not so simple after all, Biochem. Pharmacol., 2016, vol. 115, pp. 10–17. https://doi.org/10.1016/j.bcp.2016.03.014

  83. Sieghart, W., and Sperk, G., Subunit composition, distribution and function of GABAA receptor subtypes, Curr. Top. Med. Chem., 2002, vol. 2(8), pp. 795–816. https://doi.org/10.2174/1568026023393507

  84. Somogyi, P., Tamas, G., Lujan, R., and Buhl, E.H., Salient features of synaptic organisation in the cerebral cortex, Brain. Res. Brain. Res. Rev., 1998, vol. 26(2–3), pp. 113–135.

  85. Salzman, C., Addiction to benzodiazepines, Psy. Quart., 1998, vol. 69, pp. 251–261.

  86. Calcaterra, N.E. and Barrow, J.C., Classics in chemical neuroscience: diazepam (valium), ACS Chem. Neurosci., 2014, vol. 5(4), pp. 253–260. https://doi.org/10.1021/cn5000056

  87. Chang-Sheng, S.C., Olcese, R., and Olsen, R.W., A single M1 residue in the β2 subunit alters channel gating of GABAA receptor in anesthetic modulation and direct activation, J. Biol. Chem., 2003, vol. 278(44), pp. 42821–42828. https://doi.org/10.1074/jbc.M306978200

  88. Bali, M. and Akabas, M.H., Defining the propofol binding site location on the GABAA receptor, Mol. Pharmacol., 2004, vol. 65(1), pp. 68–76. https://doi.org/10.1124/mol.65.1.68

  89. Wisden, W., Korpi, E.R., and Bahn, S. The cerebellum: a model system for studying GABAA receptor diversity, Neuropharmacology., 1996, vol. 35(9–10), pp. 1139–1160.

  90. Makela, J., Iivanainen, M., Pieninkeroinen, I.P., Waltimo, O., and Lahdensuu, M., Seizures associated with propofol anesthesia, Epilepsia, 1993, vol. 34(5), 832–835.

  91. Yamakura, T., Sakimura, K., Shimoji, K., and Mishina, M., Effects of propofol on various AMPA-, kainate-and NMDA-selective glutamate receptor channels expressed in Xenopus oocytes, Neurosci. Lett., 1995, vol. 188(3), pp. 187–190.

  92. Vasileiou, I., Xanthos, T., Koudouna, E., Perrea, D., Klonaris, C., Katsargyris, A., and Papadimitriou, L., Propofol: a review of its non-anaesthetic effects, Eur. J. Pharmacol., 2009, vol. 605(1–3), pp. 1–8. https://doi.org/10.1016/j.ejphar.2009.01.007

  93. Wu, Q., Zhao, Y., Chen, X., Zhu, M., and Miao, C., Propofol attenuates BV2 microglia inflammation via NMDA receptor inhibition, Can. J. Physiol. Pharmacol., 2018, vol. 96(3), pp. 241–248. https://doi.org/10.1139/cjpp-2017-0243

  94. Walder, B., Tramer, M.R., and Seeck, M., Seizure-like phenomena and propofol: a systematic Review, Neurology, 2002, vol. 58(9), pp. 1327–1332. https://doi.org/10.1212/wnl.58.9.1327

  95. Lin, W.C., Davenport, C.M., Mourot ,A., Vytla, D., Smith, C.M., Medeiros, K.A., Chambers, J.J., and Kramer, R.H., Engineering a light-regulated GABAA receptor for optical control of neural inhibition, ACS Chem. Biol., 2014, vol. 9(7), pp. 1414–1419. https://doi.org/10.1021/cb500167u

  96. Lin, W.C., Tsai, M.C., Davenport, C.M., Smith, C.M., Veit, J., Wilson, N.M., Adesnik, H., and Kramer, R.H., A comprehensive optogenetic pharmacology toolkit for in vivo control of GABAA receptors and synaptic inhibition, Neuron, 2015, vol. 88(5), pp. 879–891. https://doi.org/10.1016/j.neuron.2015.10.026

  97. Huckvale, R., Mortensen, M., Pryde, D., Smart, T.G., and Baker, J.R., Azogabazine; a photochromic antagonist of the GABA A receptor, Org. Biomol. Chem., 2016, vol. 14(28), pp. 6676–6678. https://doi.org/10.1039/c6ob01101b

  98. Chambon, J.P., Feltz, P., Heaulme, M., Restle, S., Schlichter, R., Biziere, K., and Wermuth, C.G., An arylaminopyridazine derivative of gamma-aminobutyric acid (GABA) is a selective and competitive antagonist at the GABAA receptor site, Proc. Natl. Acad. Sci. USA, 1985, vol. 82(6), pp. 1832–1836.

  99. Lin, W.C., Tsai, M.C., Rajappa, R., and Kramer, R.H., Design of a highly bistable photoswitchable tethered ligand for rapid and sustained manipulation of neurotransmission, J. Am. Chem. Soc., 2018, vol. 140(24), pp. 7445–7448. https://doi.org/10.1021/jacs.8b03942

  100. Gastaut, H., Naquet, R., Poire, R., and Tassinari, C.A., Treatment of status epilepticus with diazepam (Valium), Epilepsia, 1965, vol. 6(2), pp. 167–182.

  101. Tan, K.R., Rudolph, U., and Luscher, C., Hooked on benzodiazepines: GABAA receptor subtypes and addiction, Trends Neurosci., 2011, vol. 34(4), pp. 188–197. https://doi.org/10.1016/j.tins.2011.01.004

  102. Rogawski, M.A. and Heller, A.H., Diazepam buccal film for the treatment of acute seizures, Epilepsy Behav., 2019, vol. 101(Pt B), p. 106537. https://doi.org/10.1016/j.yebeh.2019.106537

  103. Vitanova, L, Haverkamp, S., and Wassle, H., Immunocytochemical localization of glycine and glycine receptors in the retina of the frog Rana ridibunda, Cell Tissue Res., 2014, vol. 317(3), pp. 227–235. https://doi.org/10.1007/s00441-004-0914-6

  104. Danglot, L., Rostaing, P., Triller, A., and Bessis, A., Morphologically identified glycinergic synapses in the hippocampus, Mol. Cell Neurosci., 2004, vol. 27(4), pp. 394–403. https://doi.org/10.1016/j.mcn.2004.05.007

  105. Brackmann, M., Zhao, C., Schmieden,V., and Braunewell, K.H., Cellular and subcellular localization of the inhibitory glycine receptor in hippocampal neurons, Biochem. Biophys. Res. Commun., 2004, vol. 324(3), pp. 1137–1142. https://doi.org/10.1016/j.bbrc.2004.09.172

  106. Xu, T.-L. and Gong, N., Glycine and glycine receptor signaling in hippocampal neurons: diversity, function and regulation, Prog. Neurobiol., 2010, vol. 91(4), pp. 349–361. https://doi.org/10.1016/j.pneurobio.2010.04.008

  107. Chattipakorn, S.C. and McMahon, L.L., Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus, J. Neurophysiol., 2003, vol. 89(3), pp. 1339–1342. https://doi.org/10.1152/jn.00908.2002

  108. Leite, J.F. and Cascio, M., Structure of ligand-gated ion channels: critical assessment of biochemical data supports novel topology, Mol. Cell. Neurosci., 2001, vol. 17(5), pp. 777–792. https://doi.org/10.1006/mcne.2001.0984

  109. Friauf, E., Hammerschmidt, B., and Kirsch, J., Development of adult-type inhibitory glycine receptors in the central auditory system of rats, J. Comp. Neurol., 1997, vol. 385(1), pp. 117–134.

  110. Malosio, M., Marqueze, B., Pouey, A., Kuhse, J., and Betz, H., Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain, EMBO J., 1991, vol. 10(9), pp. 2401–2409.

  111. Baer, K., Waldvogel, H.J., Faull, R.L.M., and Rees, M.I., Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review, Front. Mol. Neurosci., 2009, vol. 4(2), p. 25. https://doi.org/10.3389/neuro.02.025.2009

  112. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E.D., and Betz, H., Molecular cloning of the antagonist-binding subunit of the glycine receptor, Recept. Res., 1988, vol. 8(1–4), pp. 183–193.

  113. Becker, C.M., Hoch, W., and Betz, H., Glycine receptor heterogeneity in rat spinal cord during postnatal development, EMBO J., 1988, vol. 7(12), pp. 3717–3726.

  114. Grenningloh, G., Schmieden, V., Schofield, P.R., Seeburg, P.H., Siddique, T., Mohandas, T.K., Becker, C.M., and Betz, H., Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes, EMBO J., 1990, vol. 9(3), pp. 771–776.

  115. David-Watine, B., Goblet, C., De Saint Jan, D., Fucile, S., Devignot, V., Bregestovski, P., and Korn, H., Cloning, expression and electrophysiological characterization of glycine receptor alpha subunit from zebrafish, Neuroscience, 1999, vol. 90(1), pp. 303–317.

  116. Imboden, M., De Saint Jan, D., Leulier, F., Korn, H., Goblet, C., and Bregestovski, P., Isolation and characterization of an alpha 2-type zebrafish glycine receptor subunit, Neuroscience, 2001, vol. 103(3), pp. 799–810. https://doi.org/10.1016/s0306-4522(00)00575-3

  117. Devignot, V., Prado de Carvalho, L., Bregestovski, P., and Goblet, C., A novel glycine receptor αZ1 subunit variant in the zebrafish brain, Neuroscience, 2003, vol. 122(2), pp. 449–457. https://doi.org/10.1016/s0306-4522(03)00171-4

  118. Grenningloh, G., Pribilla, I., Prior, P., Multhaup, G., Beyreuther, K., Taleb, O., and Betz, H., Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor, Neuron, 1990, vol. 4(6), pp. 963–970.

  119. Bormann, J., Rundstrom, N., Betz, H., and Langosch, D., Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers, EMBO J., 1994, vol. 12(10), pp. 3729–3737.

  120. Meyer, G., Kirsch, J., Betz, H., and Langosch, D., Identification of a gephyrin binding motif on the glycine receptor p subunit, Neuron, 1995, vol. 15(3), pp. 563–572.

  121. Kirsch, J. and Betz, H., The postsynaptic protein gephyrin localization is regulated of the glycine receptor-associated by the cytoskeleton, J. Neurosci., 1995, vol. 715(6), pp. 4148–4156.

  122. Kneussel, M. and Betz, H., Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model, Trends Neurosci., 2000, vol. 23(9), pp. 429–435. https://doi.org/10.1016/s0166-2236(00)01627-1

  123. Pribilla, I., Takagi, T., Langosch, D., Bormann, J., Betz, H., and Pribilla, I., The atypical M2 segment of the subunit confers picrotoxinin resistance to inhibitory glycine receptor channels, EMBO J., 1992, vol. 11(12), pp. 4305-4311.

  124. Zhorov, B.S. and Bregestovski, P.D., Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships, Biophys. J., 2000, vol. 78(4), pp. 1786–1803. https://doi.org/10.1016/S0006-3495(00)76729-4

  125. Kirsch, J., Meyer, G., and Betz, H., Synaptic Targeting of Ionotropic Neurotransmitter Receptors, Mol. Cell. Neurosci., 1996, vol. 8(2–3), pp. 93-98.

  126. Singer, J.H. and Berger, A.J., Development of inhibitory synaptic transmission to motoneurons, Brain. Res. Bull., 2000, vol. 53(5), pp. 553–560. https://doi.org/10.1016/s0361-9230(00)00389-0

  127. Singer, J.H., Talley, E.M., Bayliss, D.A., and Berger, A.J., Development of glycinergic synaptic transmission to rat brain stem motoneurons, J. Neurophysiol., 1998, vol. 80(5), pp. 2608–2620.

  128. Mukhtarov, M., Ragozzino, D., and Bregestovski, P., Dual Ca2+ modulation of glycinergic synaptic currents in rodent hypoglossal motoneurones, J. Physiol., 2005, vol. 569(3), pp. 817–831. https://doi.org/10.1113/jphysiol.2005.094862

  129. Akagi, H. and Miledi, R., Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord, Science, 1988, vol. 242(4876), pp. 270–273.

  130. Becker, C.M., Hoch, W., and Betz, H., Glycine receptor heterogeneity in rat spinal cord during postnatal development, EMBO J., 1988, vol. 7(12), pp. 3717–3726.

  131. Samanta, S., Beharry, A.A., Sadovski, O., McCormick, T.M., Babalhavaeji, A., Tropepe, V., and Woolley, G.A., Photoswitching azo compounds in vivo with red light, J. Am. Chem. Soc., 2013, vol. 135(26), pp. 9777–9784. https://doi.org/10.1021/ja402220t

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 18-15-00313).

Author information

Authors and Affiliations

Authors

Contributions

P.D. Bregestovski—basic idea, writing and editing the paper; D.N. Ponomareva—dealing with the literature and manuscript text, tables and bibliography.

Corresponding author

Correspondence to P. D. Bregestovski.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no evident or potential conflict of interest related to the publication of this paper.

Additional information

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 4–5, pp. 436–457https://doi.org/10.31857/S0869813921040051.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bregestovski, P.D., Ponomareva, D.N. Photochromic Modulation of Cys-loop Ligand-gated Ion Channels. J Evol Biochem Phys 57, 354–371 (2021). https://doi.org/10.1134/S0022093021020162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020162

Keywords:

Navigation