Skip to main content
Log in

Structure of Sodium and Calcium Channels with Ligands

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Sodium and calcium channels play fundamental roles in the physiology of excitable cells. These channels are targets for various natural toxins, synthetic drugs and insecticides. Genetic mutations in sodium and calcium channels are associated with hereditary diseases such as cardiac arrhythmias, epilepsy, myotonia, hyperalgesia and hypoalgesia. It is not surprising that the development of selective modulators of sodium and calcium channels is an important task of neuropharmacology. In recent years, crystal and cryo-electron microscopic structures of sodium and calcium channels and their complexes with toxins and drugs have been published. In these studies, structural explanations are proposed for the numerous experimental data accumulated in previous decades. In the current review, experimental structures and theoretical models of sodium and calcium channels with toxins and drugs are considered. The possible role of current-carrying cations and their binding sites in the action of some ligands is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

BTX:

batrachotoxin;

CavAb:

calcium-selective mutant of the NavAb channel;

Cav1.x:

L-type calcium channels;

EM:

electron microscopy;

µCTX:

µ-conotoxin;

Nav1.x:

eukaryotic voltage-gated sodium channels;

NavAb and NavMs:

prokaryotic voltage-gated sodium channels;

NavPaS:

cockroach sodium channel;

PD:

pore domain;

PyR1 and PyR2:

receptors of pyrethroid insecticides;

SI, SII and SIII :

binding sites of current-carrying ions in the outer pore of sodium and calcium channels;

STX:

saxitoxin;

TTX:

tetrodotoxin;

VSD:

voltage-sensing domain;

VTD:

veratridine

REFERENCES

  1. Stevens, M., Peigneur, S., and Tytgat, J., Neurotoxins and their binding areas on voltage-gated sodium channels, Front Pharmacol., 2011, vol. 2, p. 71. https://doi.org/10.3389/fphar.2011.00071

  2. Catterall, W.A. and Swanson, T.M., Structural basis for pharmacology of voltage-gated sodium and calcium channels, Mol. Pharmacol., 2015, vol. 88, pp. 141–150. https://doi.org/10.1124/mol.114.097659

  3. Catterall, W.A., Sodium channels, inherited epilepsy, and antiepileptic drugs, Annu. Rev. Pharmacol., Toxicol., 2014, vol. 54, pp. 317–38. https://doi.org/10.1146/annurev-pharmtox-011112-140232

  4. Silver, K.S., Du, Y., Nomura, Y., Oliveira, E.E., Salgado, V.L., Zhorov, B.S., and Dong, K., Voltage- Gated Sodium Channels as Insecticide Targets, Adv. In. Insect. Phys., 2014, vol. 46, pp. 389–333. https://doi.org/10.1016/B978-0-12-417010-0.00005-7

  5. Pan, X., Li, Z., Zhou, Q., Shen, H., Wu, K., Huang, X., Chen, J., Zhang, J., Zhu, X., Lei, J., Xiong, W., Gong, H., Xiao, B., and Yan, N., Structure of the human voltage-gated sodium channel Nav1.4 in complex with beta1, Science, 2018, vol. 362. https://doi.org/10.1126/science.aau2486

  6. Chatterjee, S., Vyas, R., Chalamalasetti, S.V., Sahu, I.D., Clatot, J., Wan, X., Lorigan, G.A., Deschenes, I., and Chakrapani, S., The voltage-gated sodium channel pore exhibits conformational flexibility during slow inactivation, J. Gen. Physiol., 2018, vol. 150, pp. 1333–1347. https://doi.org/10.1085/jgp.201812118

  7. Stotz. S.C., Jarvis, S.E., and Zamponi, G.W., Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels, J. Physiol., 2004, vol. 554, pp. 263–273. https://doi.org/10.1113/jphysiol.2003.047068

  8. Abderemane-Ali, F., Findeisen, F., Rossen, N.D., and Minor, D.L., Jr., A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation, Neuron, 2019, vol. 101, pp. 1134–1149 e1133. https://doi.org/10.1016/j.neuron.2019.01.011

  9. Doyle, D.A., Morais, Cabral, J., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKinnon, R., The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 1998, vol. 280, pp. 69–77. https://doi.org/10.1126/science.280.5360.69

  10. Payandeh, J., Scheuer, T., Zheng, N., and Catterall, W.A., The crystal structure of a voltage-gated sodium channel. Nature, 2011, vol. 475, pp. 353–358. https://doi.org/10.1038/nature10238

  11. Shen, H., Zhou, Q., Pan, X., Li, Z., Wu, J., and Yan, N., Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution, Science, 2017, vol. 355. https://doi.org/10.1126/science.aal4326

  12. Moczydlowski, E.G., The molecular mystique of tetrodotoxin, Toxicon, 2013, vol. 63, pp. 165–183. https://doi.org/10.1016/j.toxicon.2012.11.026

  13. Thottumkara, A.P., Parsons, W.H., and Du, B. J., Saxitoxin, Angew. Chem. Int. Ed. Engl., 2014, vol. 53, pp. 5760–5784. https://doi.org/10.1002/anie.201308235

  14. Terlau, H., Heinemann, S.H., Stuhmer, W., Pusch, M., Conti, F., Imoto, K., and Numa, S., Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II, FEBS Lett., 1991, vol. 293, pp. 93–96. https://doi.org/10.1016/0014-5793(91)81159-6

  15. Lipkind, G.M. and Fozzard, H.A., A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel, Biophys J., 1994, vol. 66, pp. 1–13. https://doi.org/10.1016/S0006-3495(94)80746-5

  16. Dudley, S.C., Jr., Chang, N., Hall, J., Lipkind, G., Fozzard, H.A., and French, R.J, mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains, J. Gen. Physiol., 2000, vol. 116, pp. 679–690. https://doi.org/10.1085/jgp.116.5.679

  17. Tikhonov, D.B. and Zhorov, B.S., Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands, Biophys. J., 2005, vol. 88, pp. 184–197. https://doi.org/10.1529/biophysj.104.048173

  18. Lipkind, G.M. and Fozzard, H.A., KcsA crystal structure as framework for a molecular model of the Na(+) channel pore, Biochemistry, 2000, vol. 39, pp. 8161–8170. https://doi.org/10.1021/bi000486w

  19. Tikhonov, D.B. and Zhorov, B.S., Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure, Mol. Pharmacol., 2012, vol. 82, pp. 97–104. https://doi.org/10.1124/mol.112.078212

  20. Tikhonov, D.B. and Zhorov, B.S., Predicting Structural Details of the Sodium Channel Pore Basing on Animal Toxin Studies, Front Pharmacol., 2018, vol. 9, p. 880. https://doi.org/10.3389/fphar.2018.00880

  21. Korkosh, V.S., Zhorov, B.S., and Tikhonov, D.B., Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4, J. Gen. Physiol., 2014, vol. 144, pp. 231–244. https://doi.org/10.1085/jgp.201411226

  22. Choudhary, G., Aliste, M.P., Tieleman, D.P., French, R.J., and Dudley, S.C., Jr., Docking of muconotoxin GIIIA in the sodium channel outer vestibule, Channels (Austin), 2007, vol. 1, pp. 344–352. https://doi.org/10.4161/chan.5112

  23. Chang, N.S, French, R.J., Lipkind, G.M., Fozzard, H.A., and Dudley, S., Jr., Predominant interactions between mu-conotoxin Arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis, Biochemistry, 1998, vol. 37, pp. 4407–4419. https://doi.org/10.1021/bi9724927

  24. Khan, A., Romantseva, L., Lam, A., Lipkind, G., and Fozzard, H.A., Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block, J. Physiol., 2002, vol. 543, pp. 71–84. https://doi.org/10.1113/jphysiol.2002.021014

  25. McArthur, J.R., Ostroumov, V., Al-Sabi, A., McMaster, D., and French, R.J., Multiple, distributed interactions of mu-conotoxin PIIIA associated with broad targeting among voltage-gated sodium channels, Biochemistry, 2011, vol. 50, pp. 116–124. https://doi.org/10.1021/bi101316y

  26. Wilson, M.J., Yoshikami, D., Azam, L., Gajewiak, J., Olivera, B.M., Bulaj, G., and Zhang, M.M., mu-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 10302–10307. https://doi.org/10.1073/pnas.1107027108

  27. Hui, K., Lipkind, G., Fozzard, H.A., and French, R.J., Electrostatic and steric contributions to block of the skeletal muscle sodium channel by mu-conotoxin, J. Gen. Physiol., 2002, vol. 119, pp. 45–54. https://doi.org/10.1085/jgp.119.1.45

  28. Zhang, M.M., McArthur, J.R., Azam, L., Bulaj, G., Olivera, B.M., French, R.J., and Yoshikami, D., Synergistic and antagonistic interactions between tetrodotoxin and mu-conotoxin in blocking voltage-gated sodium channels, Channels (Austin), 2009, vol. 3, pp. 32–38. https://doi.org/10.4161/chan.3.1.7500

  29. Pan, X., Li, Z., Huang, X., Huang, G., Gao, S., Shen, H., Liu, L., Lei, J., and Yan, N., Molecular basis for pore blockade of human Na(+) channel Nav1.2 by the mu-conotoxin KIIIA, Science, 2019, vol. 363, pp. 1309–1313. https://doi.org/10.1126/science.aaw2999

  30. Shen, H., Liu, D., Wu, K., Lei, J., and Yan, N., Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins, Science, 2019, vol. 363, pp. 1303–1308. https://doi.org/10.1126/science.aaw2493

  31. Shen, H., Li, Z., Jiang, Y., Pan, X., Wu, J., Cristofori-Armstrong, B., Smith J.J., Chin Y.K.Y., Lei J., Zhou Q., King G.F., and Yan N., Structural basis for the modulation of voltage-gated sodium channels by animal toxins, Science, 2018, vol. 362. https://doi.org/10.1126/science.aau2596

  32. Wang, J., Yarov-Yarovoy, V., Kahn, R., Gordon, D., Gurevitz, M., Scheuer, T., and Catterall, W.A., Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 15426–15431. https://doi.org/10.1073/pnas.1112320108

  33. Zhang, J.Z., Yarov-Yarovoy, V., Scheuer, T., Karbat, I., Cohen, L., Gordon, D., Gurevitz, M., and Catterall, W.A., Structure–function map of the receptor site for beta-scorpion toxins in domain II of voltage-gated sodium channels, J. Biol. Chem., 2011, vol. 286, pp. 33641–33651. https://doi.org/10.1074/jbc.M111.282509

  34. Zhang, J.Z., Yarov-Yarovoy, V., Scheuer, T., Karbat, I., Cohen, L., Gordon, D., Gurevitz, M., and Catterall, W.A., Mapping the interaction site for a beta-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels, J. Biol. Chem., 2012, vol. 287, pp. 30719–30728. https://doi.org/10.1074/jbc.M112.370742

  35. Bosmans, F. and Swartz, K.J., Targeting voltage sensors in sodium channels with spider toxins, Trends Pharmacol. Sci., 2010, vol. 31, pp. 175–182. https://doi.org/10.1016/j.tips.2009.12.007

  36. Minassian, N.A., Gibbs, A., Shih, A.Y., Liu, Y., Neff, R.A., Sutton, S.W., Mirzadegan, T., Connor, J., Fellows, R., Husovsky, M., Nelson, S., Hunter, M.J., Flinspach, M., and Wickenden, A.D., Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (mu-TRTX-Hh2a), J. Biol. Chem., 2014, vol. 288, pp. 22707–22720. https://doi.org/10.1074/jbc.M113.461392

  37. Xiao, Y., Blumenthal, K., and Cummins, T.R., Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins, Mol. Pharmacol., 2014, vol. 86, pp. 159–167. https://doi.org/10.1124/mol.114.092338

  38. Thomsen, W.J. and Catterall, W.A., Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 10161–10165. https://doi.org/10.1073/pnas.86.24.10161

  39. Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T., and Catterall, W.A., Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit, J. Biol. Chem., 1996, vol. 271, pp. 15950–15962. https://doi.org/10.1074/jbc.271.27.15950

  40. Cestele, S., Yarov-Yarovoy, V., Qu, Y., Sampieri, F., Scheuer, T., and Catterall, W.A. Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin, J. Biol. Chem., 2006, vol. 281, pp. 21332–21344. https://doi.org/10.1074/jbc.M603814200

  41. Clairfeuille, T., Cloake, A., Infield, D.T., Llongueras, J.P., Arthur, C.P., Li, Z.R., Jian, Y., Martin- Eauclaire, M.F., Bougis, P.E., Ciferri, C., Ahern, C.A., Bosmans, F., Hackos, D.H., Rohou, A., and Payandeh, J., Structural basis of alpha-scorpion toxin action on Nav channels, Science, 2019, vol. 363. https://doi.org/10.1126/science.aav8573

  42. Xu, H., Li, T., Rohou, A., Arthur, C.P., Tzakoniati, F., Wong, E., Estevez, A., Kugel, C., Franke, Y., Chen, J., Ciferri, C., Hackos, D.H., Koth, C.M., and Payandeh, J., Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin, Cell, 2019, vol. 176, pp. 702–715 e714. https://doi.org/10.1016/j.cell.2018.12.018

  43. Wisedchaisri, G., Tonggu, L., Gamal El-Din, T.M., McCord, E., Zheng, N., and Catterall, W.A., Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin, Mol.Cell., 2020. https://doi.org/10.1016/j.molcel.2020.10.039

  44. Ragsdale, D.S., McPhee, J.C., Scheuer, T., and Catterall, W.A., Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels, Proc. Natl. Acad. Sci.USA, 1996, vol. 93, pp. 9270–9275. https://doi.org/10.1073/pnas.93.17.9270

  45. O’Leary, M.E. and Chahine, M. Cocaine binds to a common site on open and inactivated human heart (Na(v)1.5) sodium channels, J. Physiol., 2002, vol. 541, pp. 701–716. https://doi.org/10.1113/jphysiol.2001.016139

  46. Yarov-Yarovoy, V., McPhee, J.C., Idsvoog, D., Pate, C., Scheuer, T., and Catterall, W.A., Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block, J. Biol. Chem., 2002, vol. 277, pp. 35393–35401. https://doi.org/10.1074/jbc.M206126200

  47. Ragsdale, D.S., McPhee, J.C., Scheuer, T., and Catterall, W.A., Molecular determinants of state-dependent block of Na+ channels by local anesthetics, Science, 1994, vol. 265, pp. 1724–1728. https://doi.org/10.1126/science.8085162

  48. Ahern, C.A., Eastwood, A.L., Dougherty, D.A., and Horn, R., Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels, Circ. Res., 2008, vol. 102, pp. 86–94. https://doi.org/10.1161/CIRCRESAHA.107.160663

  49. Mike, A. and Lukacs, P., The enigmatic drug binding site for sodium channel inhibitors, Curr. Mol. Pharmacol., 2010, vol. 3, pp. 129–144. https://doi.org/10.2174/1874467211003030129

  50. Yamagishi, T., Xiong, W., Kondratiev, A., Velez, P., Mendez-Fitzwilliam, A., Balser, J.R., Marban, E., and Tomaselli, G.F., Novel molecular determinants in the pore region of sodium channels regulate local anesthetic binding, Mol. Pharmacol., 2009, vol. 76, pp. 861–871. https://doi.org/10.1124/mol.109.055863

  51. Liu, G., Yarov-Yarovoy, V., Nobbs, M., Clare, J.J., Scheuer, T., Catterall, W.A., Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltagegated sodium channels, Neuropharmacology, 2003, vol. 44, pp. 413–422. https://doi.org/10.1016/s0028-3908(02)00400-8

  52. Kuo, C.C., A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels, Mol. Pharmacol., 1998, vol. 54, pp. 712–721.

  53. Catterall, W.A., Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsants, Trends Pharmacol. Sci., 1987, vol. 8, pp. 57–65. https://doi.org/10.1016/0165-6147(87)90011-3

  54. Catterall, W.A., Voltage-gated sodium channels at 60: structure, function and pathophysiology, J. Physiol., 2012, vol. 590, pp. 2577–2589. https://doi.org/10.1113/jphysiol.2011.224204

  55. Tikhonov, D.B., Bruhova, I., and Zhorov, B.S., Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine, FEBS Lett., 2006, vol. 580, pp. 6027–6032. https://doi.org/10.1016/j.febslet.2006.10.035

  56. Naylor, C.E., Bagneris, C., DeCaen, P.G., Sula, A., Scaglione, A., Clapham, D.E., and Wallace, B.A., Molecular basis of ion permeability in a voltage-gated sodium channel, EMBO J., 2016, vol. 35, pp. 820–830. https://doi.org/10.15252/embj.201593285

  57. Sula, A., Booker, J., Ng, L.C., Naylor, C.E., DeCaen, P.G., and Wallace, B.A., The complete structure of an activated open sodium channel, Nat. Commun., 2017, vol. 8, pp. 14205. https://doi.org/10.1038/ncomms14205

  58. Tikhonov, D.B. and Zhorov, B.S., Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants, J. Gen. Physiol., 2017, vol. 149, pp. 465–481. https://doi.org/10.1085/jgp.201611668

  59. Nguyen, P.T., DeMarco, K.R., Vorobyov, I., Clancy, C.E., and Yarov-Yarovoy, V., Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel, Proc. Natl. Acad. Sci. USA, 2019, vol. 116, pp. 2945–2954. https://doi.org/10.1073/pnas.1817446116

  60. Buyan, A., Sun, D., and Corry, B., Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels, Proc. Natl. Acad. Sci. USA, 2018, vol. 115, pp. E3135–E3144. https://doi.org/10.1073/pnas.1714131115

  61. Gamal El-Din, T.M., Lenaeus, M.J., Zheng, N., and Catterall, W.A., Fenestrations control resting- state block of a voltage-gated sodium channel, Proc. Natl. Acad. Sci. USA, 2018, vol. 115, pp. 13111–13116. https://doi.org/10.1073/pnas.1814928115

  62. Jiang, D., Shi, H., Tonggu, L., Gamal El-Din, T.M., Lenaeus, M.J., Zhao, Y., Yoshioka, C., Zheng, N., and Catterall, W.A., Structure of the Cardiac Sodium Channel, Cell, 2020, vol. 180, pp. 122–134 e110. https://doi.org/10.1016/j.cell.2019.11.041

  63. Silver, K., Dong, K., and Zhorov, B.S., Molecular Mechanism of Action and Selectivity of Sodium Ch annel Blocker Insecticides, Curr. Med. Chem., 2017, 24, pp. 2912–2924. https://doi.org/10.2174/0929867323666161216143844

  64. Zhang, Y., Du, Y., Jiang, D., Behnke, C., Nomura, Y., Zhorov, B.S., and Dong, K., The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides, J. Biol. Chem., 2016, vol. 291, pp. 20113–20124. https://doi.org/10.1074/jbc.M116.742056

  65. Schewe, M., Sun, H., Mert, U., Mackenzie, A., Pike, A.C.W., Schulz, F., Constantin, C., Vowinkel, K.S., Conrad, L.J., Kiper, A.K., Gonzalez, W., Musinszki, M., Tegtmeier, M., Pryde, D.C., Belabed, H., Nazare, M., de Groot, B.L., Decher, N., Fakler, B., Carpenter, E.P., Tucker, S.J., and Baukrowitz, T., A pharmacological master key mechanism that unlocks the selectivity filter gate in K(+) channels, Science, 2019, vol. 363, pp. 875–880. https://doi.org/10.1126/science.aav0569

  66. Huang, W., Liu, M., Yan, S.F., and Yan, N., Structure-based assessment of disease-related mutations in human voltage-gated sodium channels, Protein Cell, 2017, vol. 8(6), pp. 401–438. https://doi.org/10.1007/s13238-017-0372-z

  67. Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Maddipatla, Z., Malheiro, A., McDaniel, K., Ovetsky, M., Riley, G., Zhou, G., Holmes, J.B., Kattman, B.L., and Maglott, D.R., ClinVar: improving access to variant interpretations and supporting evidence, Nucleic Acids Res., 2018, vol. 46, pp. D1062–D1067. https://doi.org/10.1093/nar/gkx1153

  68. Imbrici, P., Liantonio, A., Camerino, G.M., De Bellis, M., Camerino, C., Mele, A., Giustino, A., Pierno, S., De Luca, A., Tricarico, D., Desaphy, J.F., and Conte, D., Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery, Front Pharmacol., 2016, vol. 7, pp. 121. https://doi.org/10.3389/fphar.2016.00121

  69. El-Sherif, N. and Boutjdir, M., Role of pharmacotherapy in cardiac ion channelopathies, Pharmacol. Ther., 2015, vol. 155, pp. 132–142. https://doi.org/10.1016/j.pharmthera.2015.09.002

  70. Antzelevitch, C., Burashnikov, A., Sicouri, S., and Belardinelli, L., Electrophysiologic basis for the antiarrhythmic actions of ranolazine, Heart Rhythm, 2011, vol. 8, pp. 1281–1290. https://doi.org/10.1016/j.hrthm.2011.03.045

  71. Zhu, W., Mazzanti, A., Voelker, T.L., Hou, P., Moreno, J.D., Angsutararux, P., Naegle, K.M., Priori, S.G., and Silva, J.R., Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation, Circ. Res., 2019, vol. 124, pp. 539–552. https://doi.org/10.1161/CIRCRESAHA.118.314050

  72. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., and Coleman, R.G., ZINC: a free tool to discover chemistry for biology, J. Chem. Inf. Model, 2012, vol. 52, pp. 1757–1768. https://doi.org/10.1021/ci3001277

  73. Wang, S.Y. and Wang, G.K., Voltage-gated sodium channels as primary targets of diverse lipid- soluble neurotoxins, Cell Signal., 2003, vol. 15, pp. 151–159. https://doi.org/10.1016/s0898-6568(02)00085-2

  74. Tikhonov, D.B. and Zhorov, B.S., Sodium channel activators: model of binding inside the pore and a possible mechanism of action, FEBS Lett., 2005, vol. 579, pp. 4207–4212. https://doi.org/10.1016/j.febslet.2005.07.017

  75. Wang, S.Y., Tikhonov, D.B., Mitchell, J., Zhorov, B.S., and Wang, G.K., Irreversible block of cardiac mutant Na+ channels by batrachotoxin, Channels (Austin), 2007, vol. 1, pp. 179–188. https://doi.org/10.4161/chan.4437

  76. Wang, S.Y., Tikhonov, D.B., Zhorov, B.S., Mitchell, J., and Wang, G.K., Serine-401 as a batrachotoxin- and local anesthetic-sensing residue in the human cardiac Na+ channel, Pflugers Arch., 2007, vol. 454, pp. 277–287. https://doi.org/10.1007/s00424-006-0202-2

  77. Wang, S.Y., Mitchell, J., Tikhonov, D.B., Zhorov, B.S., and Wang, G.K., How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis, Mol. Pharmacol., 2006, vol. 69, pp. 788–795. https://doi.org/10.1124/mol.105.018200

  78. Du, Y., Garden, D.P., Wang, L., Zhorov, B.S., and Dong, K., Identification of new batrachotoxinsensing residues in segment IIIS6 of the sodium channel, J. Biol. Chem., 2011, vol. 286, pp. 13151–13160. https://doi.org/10.1074/jbc.M110.208496

  79. Finol-Urdaneta, R.K., McArthur, J.R., Goldschen-Ohm, M.P., Gaudet, R., Tikhonov, D.B., Zhorov, B.S., and French, R.J., Batrachotoxin acts as a stent to hold open homotetrameric prokaryotic voltage-gated sodium channels, J. Gen. Physiol., 2019, vol. 151, pp. 186–199. https://doi.org/10.1085/jgp.201812278

  80. Wang, G.K. and Wang, S.Y., Veratridine block of rat skeletal muscle Nav1.4 sodium channels in the inner vestibule, J. Physiol., 2003, vol. 548, pp. 667–675. https://doi.org/10.1113/jphysiol.2002.035469

  81. Dong, K., Du, Y., Rinkevich, F., Nomura, Y., Xu, P., Wang, L., Silver, K., and Zhorov, B.S., Molecular biology of insect sodium channels and pyrethroid resistance, Insect Biochem. Mol. Biol., 2014, vol. 50, pp. 1–17. https://doi.org/10.1016/j.ibmb.2014.03.012

  82. O’Reilly, A.O., Khambay, B.P., Williamson, M.S., Field, L.M., Wallace, B.A., and Davies, T.G., Modelling insecticide-binding sites in the voltage-gated sodium channel, Biochem. J., 2006, vol. 396, pp. 255–263. https://doi.org/10.1042/BJ20051925

  83. Du, Y., Nomura, Y., Satar, G., Hu, Z., Nauen, R., He, S.Y., Zhorov, B.S., and Dong, K., Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 11785–11790. https://doi.org/10.1073/pnas.1305118110

  84. Du, Y., Nomura, Y., Zhorov, B.S., and Dong, K., Rotational symmetry of two pyrethroid receptor sites in the mosquito sodium channel, Mol. Pharmacol., 2015, vol. 88, pp. 273–280. https://doi.org/10.1124/mol.115.098707

  85. Du, Y., Nomura, Y., Zhorov, B.S., and Dong, K., Evidence for Dual Binding Sites for 1,1,1-Trichloro- 2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels, J. Biol. Chem., 2016, vol. 291, pp. 4638–4648. https://doi.org/10.1074/jbc.M115.678672

  86. Hille, B., Local anesthetics: hydrophilic and hydrophobic pathways for the drug–receptor reaction, J. Gen. Physiol., 1977, vol. 69, pp. 497–515. https://doi.org/10.1085/jgp.69.4.497

  87. Alpert, L.A., Fozzard, H.A., Hanck, D.A. and Makielski, J.C., Is there a second external lidocaine binding site on mammalian cardiac cells? Am. J. Physiol., 1989, vol. 257, pp. H79–84. https://doi.org/10.1152/ajpheart.1989.257.1.H79

  88. Qu, Y., Rogers, J., Tanada, T., Scheuer, T., and Catterall, W.A., Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 11839–11843. https://doi.org/10.1073/pnas.92.25.11839

  89. Bruhova, I., Tikhonov, D.B., and Zhorov, B.S., Access and binding of local anesthetics in the closed sodium channel, Mol. Pharmaco., 2008, vol. 74, pp. 1033–1045. https://doi.org/10.1124/mol.108.049759

  90. Sait, L.G., Sula, A., Ghovanloo, M.R., Hollingworth, D., Ruben, P.C., and Wallace, B.A., Cannabidiol interactions with voltage-gated sodium channels, Elife., 2020, vol. 9, pp. e58593. https://doi.org/10.7554/eLife.58593

  91. Hockerman, G.H., Peterson, B.Z., Johnson, B.D., and Catterall, W.A., Molecular determinants of drug binding and action on L-type calcium channels, Annu. Rev. Pharmacol. Toxicol., 1997, vol. 37, pp. 361–396.

  92. Godfraind, T., Discovery and Development of Calcium Channel Blockers, Front Pharmacol., 2017, vol. 8, pp. 286. https://doi.org/10.3389/fphar.2017.00286

  93. Cosconati, S., Marinelli, L., Lavecchia, A., and Novellino, E., Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: model construction and docking calculations, J. Med. Chem., 2007, vol. 50, pp. 1504–1513. https://doi.org/10.1021/jm061245a

  94. Cheng, R.C., Tikhonov, D.B., and Zhorov, B.S., Structural model for phenylalkylamine binding to L-type calcium channels, J. Biol. Chem., 2009, vol. 284, pp. 28332–28342. https://doi.org/10.1074/jbc.M109.027326

  95. Lipkind, G.M. and Fozzard, H.A., Molecular modeling of interactions of dihydropyridines and phenylalkylamines with the inner pore of the L-type Ca2+ channel, Mol. Pharmacol., 2003, vol. 63, pp. 499–511. https://doi.org/10.1124/mol.63.3.499

  96. Tikhonov, D.B. and Zhorov, B.S., Structural Model for Dihydropyridine Binding to L-type Calcium Channels, J. Biol. Chem., 2009, vol. 284, pp. 9006–9017. https://doi.org/10.1074/jbc.M109.011296

  97. Tikhonov, D.B. and Zhorov, B.S., Molecular modeling of benzothiazepine binding in the L-type calcium channel, J. Biol. Chem., 2008, vol. 283, pp. 17594–17604. https://doi.org/10.1074/jbc.M800141200

  98. Li, W., and Shi, G., How CaV1.2-bound verapamil blocks Ca(2+) influx into cardiomyocyte: Atomic level views, Pharmacol. Res., 2019, vol. 139, pp. 153–157. https://doi.org/10.1016/j.phrs.2018.11.017

  99. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels, Nature, 1983, vol. 303, pp. 535–537. https://doi.org/10.1038/303535a0

  100. Gao, S. and Yan, N., Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Cav 1.1 by Dihydropyridine Compounds*, Angew Chem. Int. Ed. Engl., 2020. https://doi.org/10.1002/anie.202011793

  101. Tang, L., Gamal El-Din, T.M., Swanson, T.M., Pryde, D.C., Scheuer, T., Zheng, N., and Catterall, W.A., Structural basis for inhibition of a voltage-gated Ca(2+) channel by Ca(2+) antagonist drugs, Nature, 2016, vol. 537, pp. 117–121. https://doi.org/10.1038/nature19102

  102. Xu, F., Xiong, W., Huang, Y., Shen, J., Zhou, D., and Tang, L., Structural basis for efonidipine block of a voltage-gated Ca(2+) channel, Biochem. Biophys. Res. Commun., 2019, vol. 513, pp. 631–634. https://doi.org/10.1016/j.bbrc.2019.03.176

  103. Tang, L., Gamal El-Din, T.M., Lenaeus, M.J., Zheng,N., and Catterall, W.A., Structural Basis for Diltiazem Block of a Voltage-Gated Ca(2+) Channel, Mol. Pharmacol., 2019, vol. 96, pp. 485–492. https://doi.org/10.1124/mol.119.117531

  104. Zhao, Y., Huang, G., Wu, J., Wu, Q., Gao, S., Yan, Z., Lei, J., and Yan, N., Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca(2+) Channel, Cell, 2019, vol. 177, pp. 1495–1506 e1412. https://doi.org/10.1016/j.cell.2019.04.043

  105. Fehrentz, T., Huber, F.M.E., Hartrampf, N., Bruegmann, T., Frank, J.A., Fine, N.H.F., Malan, D., Danzl, J.G., Tikhonov, D.B., Sumser, M., Sasse, P., Hodson, D.J., Zhorov, B.S., Klocker, N., and Trauner, D., Optical control of L-type Ca(2+) channels using a diltiazem photoswitch, Nat. Chem. Biol., 2018, vol. 14, pp. 764–767. https://doi.org/10.1038/s41589-018-0090-8

  106. Tikhonov, D.B., Lin, L., Yang, D.S.C., Yuchi, Z., and Zhorov, B.S., Phenylalkylamines in calcium channels: computational analysis of experimental structures, J. Comput. Aided Mol. Des., 2020, vol. 34, pp. 1157–1169. https://doi.org/10.1007/s10822-020-00330-0

  107. Zhao, Y., Huang, G., Wu, Q., Wu, K., Li, R., Lei, J., Pan, X., and Yan, N., Cryo-EM structures of apo and antagonist-bound human Cav3.1, Nature, 2019, vol. 576, pp. 492–497. https://doi.org/10.1038/s41586-019-1801-3

Download references

Funding

This work was supported by the Ministry of Science in Higher Education for the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Zhorov.

Ethics declarations

CONFLICT OF INTEREST

There are no conflicts of interest related to the publication of this article.

Additional information

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 4–5, pp. 417–435https://doi.org/10.31857/S0869813921040178.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhorov, B.S. Structure of Sodium and Calcium Channels with Ligands. J Evol Biochem Phys 57, 337–353 (2021). https://doi.org/10.1134/S0022093021020150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020150

Keywords:

Navigation