Skip to main content
Log in

Effect of Low-Molecular-Weight Allosteric Agonists of the Luteinizing Hormone Receptor on Its Expression and Distribution in Rat Testes

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) regulate testicular steroidogenesis by interacting with the orthosteric site located in the extracellular domain of the LH receptor (LHR). The use of hCG and LH in medicine is fraught with side effects caused by hyperactivation of LH-dependent cascades and the development of resistance of target cells to endogenous gonadotropins due to a decrease in the activity and expression of LHR. An alternative to gonadotropins is low-molecular-weight compounds which interact with the LHR transmembrane allosteric site. The goal of this work was to study the relationship between the steroidogenic effects of hCG and thieno[2,3-d]pyrimidine derivatives (TPDs) with an activity of LHR agonists and their ability to influence the expression of the LHR-encoding Lhr gene both in vitro, when acting on the primary culture of rat Leydig cells, and in vivo, when administered to male rats. hCG stimulated testosterone production with a high efficiency at an early stage of its effect on Leydig cells (after 30 min) and upon a single administration to male rats (after 3 h), exceeding TPDs in activity by this parameter. After 1–3 h of acting on Leydig cells and long-term administration to male rats, the steroidogenic effect of hCG decreased and became comparable to that of TPDs. In the Leydig cells and rat testes, hCG suppressed Lhr gene expression, which was partially restored in vivo on days 7–10 being accompanied by a slight increase in the steroidogenic effect of hCG, though to a significantly smaller extent than on the first day. The treatment with TP03, which was the most active of the TPDs studied, had a little effect on Lhr gene expression in Leydig cells but significantly increased it in the rat testes after long-term administration of the drug. The steroidogenic effect of TP03 positively correlated with Lhr gene expression. When TP03 was applied to aging rats, its steroidogenic effect decreased, most likely, due to the absence of its stimulatory effect on LHR expression. Thus, after long-term administration, TPDs exert a moderately expressed, stable over time, stimulatory effect on testosterone production but do not decrease LHR expression, which prevents testicular resistance to endogenous gonadotropins under conditions of steroidogenesis stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nakabayashi, K., Kudo, M., Hsueh, A.J., and Maruo, T., Activation of the luteinizing hormone receptor in the extracellular domain, Mol. Cell. Endocrinol., 2003, vol. 202(1–2), pp. 139–144. https://doi.org/10.1016/s0303-7207(03)00075-3

  2. Riccetti, L., Yvinec, R., Klett, D., Gallay, N., Combarnous, Y., Reiter, E., Simoni, M., Casarini, L., and Ayoub, M.A., Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors, Sci. Rep., 2017, vol. 7(1), p. 940. https://doi.org/10.1038/s41598-017-01078-8

  3. De Pascali, F. and Reiter, E., β-arrestins and biased signaling in gonadotropin receptors, Minerva Ginecol., 2018, vol. 70(5), pp. 525–538. https://doi.org/10.23736/S0026-4784.18.04272-7

  4. Casarini, L., Santi, D., Brigante, G., and Simoni, M., Two hormones for one receptor: evolution, biochemistry, actions, and pathophysiology of LH and hCG, Endocr. Rev., 2018, vol. 39(5), pp. 549–592. https://doi.org/10.1210/er.2018-00065. PMID: 29905829

  5. Choi, J. and Smitz, J., Luteinizing hormone and human chorionic gonadotropin: origins of difference, Mol. Cell. Endocrinol., 2014, vol. 383(1–2), pp. 203–213. https://doi.org/10.1016/j.mce.2013.12.009

  6. Riccetti, L., De Pascali, F., Gilioli, L., Potì, F., Giva, L.B., Marino, M., Tagliavini, S., Trenti, T., Fanelli, F., Mezzullo, M., Pagotto, U., Simoni, M., and Casarini, L., Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro, Reprod. Biol. Endocrinol., 2017, vol. 15(1), 2. https://doi.org/10.1186/s12958-016-0224-3

  7. van Koppen, C.J., Zaman, G.J., Timmers, C.M., Kelder, J., Mosselman, S., van de Lagemaat, R., Smit, M.J., and Hanssen, R.G., A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor, Naunyn Schmiedebergs Arch. Pharmacol., 2008, vol. 378(5), pp. 503–514. https://doi.org/10.1007/s00210-008-0318-3

  8. Nataraja, S.G., Yu, H.N., and Palmer, S.S., Discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors, Front. Endocrinol. (Lausanne), 2015, vol. 6, p. 142. https://doi.org/10.3389/fendo.2015.00142

  9. Derkach, K.V., Shpakova, E.A., and Shpakov, A.O., Palmitoylated peptide 562–572 of luteinizing hormone receptor increases testosterone level in male rats, Bull. Exp. Biol. Med., 2014, vol. 158(2), pp. 209–212. https://doi.org/10.1007/s10517-014-2724-5

  10. Shpakova, E.A., Sorokoumov, V.N., Akent’ev, A.V., Derkach, K.V., Tennikova, T.B., and Shpakov, A.O., The relationship between micelle formation and biological activity of peptide 562–572 of luteinizing hormone receptor modified by decanoyl radicals, Cell Tissue Biol., 2017, vol. 11(3), pp. 227–233. https://doi.org/10.1134/S1990519X17030105

  11. Troppmann, B., Kleinau, G., Krause, G., and Gromoll, J., Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor, Hum. Reprod. Update., 2013, vol. 19(5), pp. 583–602. https://doi.org/10.1093/humupd/dmt023

  12. Hollander-Cohen, L., Böhm, B., Hausken, K., and Levavi-Sivan, B., Ontogeny of the specificity of gonadotropin receptors and gene expression in carp, Endocr. Connect., 2019, vol. 8(11), pp. 1433–1446. https://doi.org/10.1530/EC-19-0389. PMID: 31581128; PMCID: PMC6826172

  13. van de Lagemaat, R., Raafs, B.C., van Koppen, C., Timmers, C.M., Mulders, S.M., and Hanssen, R.G., Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH, Endocrinology, 2011, vol. 152(11), pp. 4350–4357. https://doi.org/10.1210/en.2011-1077

  14. Shpakov, A.O., Dar’in, D.V., Derkach, K.V., and Lobanov, P.S., The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase systems in the rat testes, Dokl. Biochem. Biophys., 2014, vol. 456, pp. 104–107. https://doi.org/10.1134/S1607672914030065

  15. Bakhtyukov, A.A., Derkach, K.V., Dar’in, D.V., Sharova, T.S., and Shpakov, A.O., Decrease in the basal and luteinizing hormone receptor agonist-stimulated testosterone production in aging male rats, Adv. Gerontol., 2019, vol. 9(2), pp. 179–185. https://doi.org/10.1134/S2079057019020036

  16. Bakhtyukov, A.A., Derkach, K.V., Dar’in, D.V., and Shpakov, A.O., Conservation of steroidogenic effect of the low-molecular-weight agonist of luteinizing hormone receptor in the course of its long-term administration to male rats, Dokl. Biochem. Biophys., 2019, vol. 484(1), pp. 78–81. https://doi.org/10.1134/S1607672919 010216

  17. Bakhtyukov, A.A., Derkach, K.V., Gureev, M.A., Dar’in, D.V., Sorokoumov, V.N., Romanova, I.V., Morina, I.Y., Stepochkina, A.M., and Shpakov, A.O., Comparative study of the steroidogenic effects of human chorionic gonadotropin and thieno[2,3-d]pyrimidine-based allosteric agonist of luteinizing hormone receptor in young adult, aging and diabetic male rats, Int. J. Mol. Sci., 2020, vol. 21(20), 7493. https://doi.org/10.3390/ijms21207493

  18. Harman, S.M., Metter, E.J., Tobin, J.D., Pearson, J., and Blackman, M.R., Baltimore longitudinal study of aging. Longitudinal effects of aging on serum total and free testosterone levels in healthy men, J. Clin. Endocrinol. Metab., 2001, vol. 86(2), pp. 724–731. https://doi.org/10.1210/jcem.86.2.7219

  19. Midzak, A.S., Chen, H., Paoadopoulus, V., and Zirkin, B.R., Leydig cell aging and the mechanisms of reduce testosterone synthesis, Mol. Cell. Endocrinol., 2009, vol. 299(1), pp. 23–31. https://doi.org/10.1016/j.mce.2008.07.016

  20. Derkach, K.V., Legkodukh, A.S., Dar’in, D.V., and Shpakov, A.O., The stimulating effect of thienopyrimidines structurally similar to Org 43553 on adenylate cyclase activity in the testes and on testosterone production in male rats, Cell Tissue Biol., 2017, vol. 11(1), pp. 73–80. https://doi.org/10.1134/S199 0519X17010035

  21. Derkach, K.V., Dar’in, D.V., Bakhtyukov, A.A., Lobanov, P.S., and Shpakov, A.O., In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor, Biochemistry (Moscow), Suppl. Ser. A: Memb. Cell Biol., 2016, vol. 10(4), pp. 294–300. https://doi.org/10.1134/S1990747816030132

  22. Abayasekara, D.R., Kurlak, L.O., Band, A.M., Sullivan, M.H., and Cooke, B.A., Effect of cell purity, cell concentration, and incubation conditions on rat testis Leydig cell steroidogenesis, In Vitro Cell. Dev. Biol., 1991, vol. 27(3), pp. 253–259. https://doi.org/10.1007/BF02630926

  23. Bakhtyukov, A.A., Sokolova, T.V., Dar’in, D.V., Derkach, K.V., and Shpakov, A.O., The comparative study of the stimulating effect of low-weight-molecular agonist of the luteinizing hormone receptor and the human chorionic gonadotropin on the steroidogenesis in the rat Leydig cells, Ross. Fiziol. Zh. Im. I.M. Sechenova, 2017, vol. 103(10), pp. 1181–1192.

  24. Bakhtyukov, A.A., Derkach, K.V., Dar’in, D.V., Stepochkina, A.M., and Shpakov, A.O., A low molecular weight agonist of the luteinizing hormone receptor stimulates adenylyl cyclase in the testicular membranes and steroidogenesis in the testes of rats with type 1 diabetes, Biochemistry (Moscow), Suppl. Series A: Memb. Cell Biol., 2019, vol. 13(4), pp. 301–309. https://doi.org/10.1134/S1990747819040032

  25. Shpakov, A.O. and Derkach, K.V., The new pharmacological approaches for the regulation of functional activity of G protein-coupled receptors, Evolutionary Physiology and Biochemistry—Advances and Perspectives, Chapter 6, Intech Open Access Publisher, Rijeka, Croatia, 2018, pp. 61–74. https://doi.org/10.5772/intechopen.73322

  26. Derkach, K.V., Bakhtyukov, A.A., Shpakov, A.A., Dar’in, D.V., and Shpakov, A.O., Specificity of heterotrimeric G protein regulation by human chorionic gonadotropin and low-molecular agonist of luteinizing hormone receptor, Cell Tissue Biol., 2017, vol. 11(6), pp. 475–482. https://doi.org/10.1134/S1990519X17060037.

  27. Kenakin, T. and Christopoulos, A., Signalling bias in new drug discovery: detection, quantification and therapeutic impact, Nat. Rev. Drug Discovery, 2013, vol. 12, pp. 205–216. https://doi.org/10.1038/nrd3954

  28. Lindsley, C.W., Emmitte, K.A., Hopkins, C.R., Bridges, T.M., Gregory, K.J., Niswender, C.M., and Conn, P.J., Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors, Chem. Rev., 2016, vol. 116(11), pp. 6707–6741. https://doi.org/10.1021/acs.chemrev.5b00656

  29. Wenthur, C.J., Gentry, P.R., Mathews, T.P., and Lindsley, C.W., Drugs for allosteric sites on receptors, Annu. Rev. Pharmacol. Toxicol., 2014, vol. 54, pp. 165–184. https://doi.org/10.1146/annurev-pharmtox-010611-134525

  30. Foster, D.J. and Conn, P.J., Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders, Neuron, 2017, vol. 94(3), pp. 431–446. https://doi.org/10.1016/j.neuron.2017.03.016

  31. Baptissart, M., Martinot, E., Vega, A., Sédes, L., Rouaisnel, B., de Haze, A., Baron, S., Schoonjans, K., Caira, F., and Volle, D.H., Bile acid-FXRα pathways regulate male sexual maturation in mice, Oncotarget, 2016, vol. 7(15), pp. 19468–19482. https://doi.org/10.18632/oncotarget.7153

  32. Holota, H., Thirouard, L., Garcia, M., Monrose, M., de Haze, A., Saru, J.P., Caira, F., Beaudoin, C., and Volle, D.H., Fxrα gene is a target gene of hCG signaling pathway and represses hCG induced steroidogenesis, J. Steroid Biochem. Mol. Biol., 2019, vol. 194, p. 105460. https://doi.org/10.1016/j.jsbmb.2019.105460

  33. Holota, H., Thirouard, L., Monrose, M., Garcia, M., De Haze, A., Saru, J.P., Caira, F., Beaudoin, C., and Volle, D.H., FXRα modulates leydig cell endocrine function in mouse, Mol. Cell. Endocrinol., 2020, vol. 518, 110995. https://doi.org/10.1016/j.mce.2020.110995

  34. Wang, Y., Chen, F., Ye, L., Zirkin, B., and Chen, H., Steroidogenesis in Leydig cells: effects of aging and environmental factors, Reproduction, 2017, vol. 154, pp. 111–122. https://doi.org/10.1530/REP-17-0064

  35. Kaufman, J.M., Lapauw, B., Mahmoud, A., T’Sjoen, G., and Huhtaniemi, I.T., Aging and the male reproductive system, Endocr. Rev., 2019, vol. 40, pp. 906–972. https://doi.org/10.1210/er.2018-00178

  36. Zhou, S.J., Zhao, M.J., Yang, Y.H., Guan, D., Li, Z.G., Ji, Y.D., Zhang, B.L., Shang, X.J., Xiong, C.L., and Gu, Y.Q., Age-related changes in serum reproductive hormone levels and prevalence of androgen deficiency in Chinese community-dwelling middle-aged and aging men: Two cross-sectional studies in the same population, Medicine, 2020, vol. 99, e18605. https://doi.org/10.1097/MD.0000000000018605

  37. Sokanovic, S.J., Janjic, M.M., Stojkov, N.J., Baburski, A.Z., Bjelic, M.M., Andric, S.A., and Kostic, T.S., Age related changes of cAMP and MAPK signaling in Leydig cells of Wistar rats, Exp. Gerontol., 2014, vol. 58, pp. 19–29. https://doi.org/10.1016/j.exger.2014.07.004

  38. Baburski, A.Z., Sokanovic, S.J., Andric, S.A., and Kostic, T.S., Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells, J. Comp. Physiol., 2017, vol. 187(4), pp. 613–623. https://doi.org/10.1007/s00360-016-1052-7

  39. Aversa, A., Duca, Y., Condorelli, R.A., Calogero, A.E., and La Vignera, S., Androgen deficiency and phosphodiesterase type 5 expression changes in aging male: therapeutic implications, Front. Endocrinol. (Lausanne), 2019, vol. 10, 225. https://doi.org/10.3389/fendo.2019.00225

  40. Zhao, Y., Liu, X., Qu, Y., Wang, L., Geng, D., Chen, W., Li, L., Tian, Y., Chang, S., Zhao, C., Zhao, X., and Lv, P., The roles of p38 MAPK→COX2 and NF-κB→COX2 signal pathways in age-related testosterone reduction, Sci. Rep., 2019, vol. 9(1), 10556. https://doi.org/10.1038/s41598-019-46794-5

  41. Huang, D., Wei, W., Xie, F., Zhu, X., Zheng, L., and Lv, Z., Steroidogenesis decline accompanied with reduced antioxidation and endoplasmic reticulum stress in mice testes during ageing, Andrologia, 2018, vol. 50(1). https://doi.org/10.1111/and.12816

  42. Zhao, H., Ma, N., Chen, Q., You, X., Liu, C., Wang, T., Yuan, D., and Zhang, C., Decline in testicular function in ageing rats: changes in the unfolded protein response and mitochondrial apoptotic pathway, Exp. Gerontol., 2019, vol. 127, 110721. https://doi.org/10.1016/j.exger.2019.110721

  43. Veldhuis, J.D., Liu, P.Y., Takahashi, P.Y., and Keenan, D.M., Dynamic testosterone responses to near-physiological LH pulses are determined by the time pattern of prior intravenous LH infusion, Am. J. Physiol. Endocrinol. Metab., 2012, vol. 303, pp. 720–728. https://doi.org/10.1152/ajpendo.00200.2012

  44. Latronico, A.C. and Arnhold, I.J.P., Gonadotropin resistance, Endocr. Dev., 2013, vol. 24, pp. 25–32. https://doi.org/10.1159/000342496

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 19-75-20122). 1H-NMR studies were carried out using the equipment of the St. Petersburg State University Resource Center “Magnetic Resonance Methods of Study”; to obtain high-resolution mass spectra, the equipment of the Resource Center “Methods for Composition Analysis of Matter” was exploited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed. This study did not involve human subjects as research objects.

All procedures complied with the requirements developed and approved by the Ethics Committee at the Sechenov Institute of Evolutionary Physiology and Biochemistry (St. Petersburg), as well as with rules and regulations formulated in the EU Council Directive 1986 (86/609/EEC) and the Guide for the Care and Use of Laboratory Animals.

This study did not involve human subjects as research objects.

СONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 2, pp. 124–135https://doi.org/10.31857/S0044452921020017.

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtyukov, A.A., Derkach, K.V., Romanova, I.V. et al. Effect of Low-Molecular-Weight Allosteric Agonists of the Luteinizing Hormone Receptor on Its Expression and Distribution in Rat Testes. J Evol Biochem Phys 57, 208–220 (2021). https://doi.org/10.1134/S0022093021020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020034

Keywords:

Navigation