Skip to main content
Log in

The Role of Melatonin in Prenatal Ontogenesis

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review summarizes current ideas on the role of melatonin in prenatal ontogenesis. We report the results of experimental and clinical studies that reveal the mechanisms of melatonin involvement in the formation and development of the mother-placenta-fetus functional system. A key role of maternal melatonin and its circadian rhythmicity in the implementation of the genetic program of fetal morphofunctional development is surveyed, as well as the mechanisms that protect this program from injury caused by oxidative stress and inflammation during pregnancy complications. Melatonin controls DNA methylation and histone modification and thus prevents changes in the expression of genes directly related to programming of offspring diseases. The presented material substantiates the prospects for the use of melatonin in clinical obstetrics to prevent and treat perinatal fetal pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anisimov, V.N., Melatonin: rol’ v organizme, primenenie v klinike (Melatonin: role in the organism, clinical application), St. Petersburg, 2007.

  2. Kvetnoy, I.M., Sandvik, A.K., and Waldum, H.L., The diffuse neuroendocrine system and extrapineal melatonin, J. Mol. Endocrinol., 1997, vol. 18(1), pp. 1–3. doi: 10.1677/jme.0.0180001

  3. Mazzoccoli, G., The timing clock work of life, J. Biol. Regul. Homeost. Agents, 2011, vol. 25, pp. 137–143. PMID: 21382283

  4. Acuna-Castroviejo, D., Escames, G., Venegas, C, Diaz-Casado, M.E., Lima-Cabello, E., Lopez, L.C., Rosales-Corral, S., Tan, D.X., and Reiter, R.J., Extrapineal melatonin: sources, regulation, and potential functions, Cell. Mol. Life Sci., 2014, vol. 71(16), pp. 2997–3025. doi: 10.1007/s00018-014-1579

  5. Pandi-Perumal, S.R., Srinivasan, V., Maestroni, G.J.M., Cardinali, D.P., Poeggedoler, B., and Hardeland, R., Melatonin. Nature’s most versatile biological signal? FEBS J., 2006, vol. 273(13), pp. 2813–2838. doi: 10.1111/j.1742-4658.2006.05322.x

  6. Kvetnoy, I.M., Extrapineal melatonin: location and role within diffuse neuroendocrine system, Histochem. J., 1999, vol. 31(1), pp. 1–12. doi: 10/1023/a:100343122334. PMID 10405817

  7. Arutjunyan, A.V., Evsyukova, I.I., and Polyakova, V.O., The role of melatonin in morphofunctional development of the brain in early ontogeny, Neurochem. J., 2019, vol. 13(3), pp. 240–248. doi:10.1134/S1819712419030036

  8. Kennaway, D.J., Melatonin and development physiology and pharmacology, Sem. Perinatol., 2000, vol. 24(4), pp. 258–266. doi: 10.1053/sper.2000.8594

  9. Cipolla-Neto, J. and Amaral, F.G., Melatonin as a hormone: new physiological and clinical insights, Endocr. Rev., 2018, vol. 39(6), pp. 990–1028. doi;10.1210/er.2018-00084.

  10. Sagrillo-Fagundes, L., Assuncao Salustiano, E.M., Yen, P.W., Soliman, A., and Vaillancourt, C., Melatonin in pregnancy: effects on brain development and CNS programming disorders, Curr. Pharm. Des., 2016, vol. 22(8), pp. 978–986. doi: 10.2174/1381612822666151214104624

  11. Reiter, R.J., Rosales-Corral, S., Tan, D.X., Jou, M.J., Galano, A., and Hu, B., Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas, Cell. Mol. Life Sci., 2017, vol. 74(21), pp. 3863–3881. doi:10.1007/s00018-017-2609-7

  12. Claustrat, B., Brun, J., and Chazot, G., The basic physiology and pathophysiology of melatonin, Sleep Med. Rev., 2005, vol. 9(1), pp. 11–24. doi: 10.1016/j.smrv.2004.08.001

  13. Schlabritz-Loutsevitch, N., Hellner, N., Middendorf, R.D., Müller, D., and Olcese, J., The human myometrium as a target for melatonin, J. Clin. Endocrinol. Metab., 2003, vol. 88(2), pp. 908–913. doi: 10.1210/jc.2002-020449

  14. Venegas, C., García, J.A., Escames, G., Ortiz, F., López, A., Doerrier, C., García-Corzo, L., López, L.C., Reiter, R.J., and Acuña-Castroviejo, D., Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations, J. Pineal Res., 2012, vol. 52(2), pp. 217–227. doi: 10.1111/j.1600-079X.2011.00931.x

  15. Ma, X., Idle, J.R., Krausz, K.W., and Gonzalez, F.J., Metabolism of melatonin by human cytochromes p450, Drug Metab. Dispos., 2005, vol. 33(4), pp. 489–494. doi: 10.1124/dmd.104.002410

  16. Reppert, S.M., Godson, C., Mahle, C.D., Weaver, D.R., Slaugenhaupt, S., and Gusella, J.F., Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor, Proc. Natl. Acad. Sci. USA, 1995, vol. 92(19), pp. 8734–8738. doi: 10.1073/pnas.92.19.8734

  17. Jockers, R., Delagrange, P., Dubocovich, M.L., Markus, R.P., Renault, N., Tosini, G., Cecon, E., and Zlotos, D., Update on melatonin receptors: IUPHAR Review 20, Br. J. Pharmacol., 2016, vol. 173(18), pp. 2702–2725. doi: 10.1111/bph.13536

  18. Slominski, R.M., Reiter, R.J., Schlabritz-Loutsevitch, N., Ostrom, R.S., and Slominski, A.T., Melatonin membrane receptors in peripheral tissues: distribution and functions, Mol. Cell. Endocrinol., 2012, vol. 351(2), pp. 152–166. doi:10.1016/j.mce.2012.01.004

  19. Dubocovich, M.L., Melatonin receptors: role on sleep and circadian rhythm regulation, Sleep. Med., 2007, vol. 8(3), pp. 34–42. doi:10.1016/j.sleep.2007.10.007

  20. Ogasawara, T., Adachi, N., and Nishijima, M., Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma, Nihon. Sanka Fujinka Gakkai Zasshi, 1991, vol. 43(3), pp. 335–341. PMID: 2045702

  21. Ivanov, D.O., Evsyukova, I.I., Mazzoccoli, G., Anderson, G., Polyakova, V.O., Kvetnoy, I.M., Carbone, A., and Nasyrov, R.A., The role of prenatal melatonin in the regulation of childhood obesity, Biology, 2020, vol. 9(4), p.72. doi:10.3390/biology9040072

  22. Kivela, A., Serum melatonin during human pregnancy, Acta Endocrinol. (Copenhagen), 1991, vol. 124(3), pp. 233–237. PMID: 2011913

  23. Nakamura, Y., Tamura, H., Kashida, S., Nakayama, H., Yamagata, Y., Karube, A., Sugino, N., and Kato, H., Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy, J. Pineal Res., 2001, vol. 30(1), pp. 29–33. doi: 10.1034/j.1600-079x.2001.300104.x

  24. Reiter, R.J., Tan, D.X., Korkmaz, A., and Rosales-Corral, S.A., Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology, Humane Reprod. Update, 2014, vol. 20(2), pp. 293–307. doi: 10.1016/j.fertnstert.2014.06.014

  25. Soliman, A., Lacasse, A.A., Lanoix, D., Sagrillo-Fagundes, L., Boulard, V., and Vaillancourt, C., Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation, J. Pineal Res., 2015, vol. 59(10), pp. 38–45. doi: 10.1111/jpi.12236

  26. Richter, H.J., Hansell, J.A., Raut, S., and Glussani, D.A., Melatonin improves placental efficiency and birth weight increases the placental expression of antioxidant enzymes in undernourished pregnancy, J. Pineal Res., 2009, vol. 46(4), pp. 357–364. doi:10.1111/j,1600-079X.2009.00671x

  27. Okatani, Y., Wakatsuki, A., Shinohara, K., Taniguchi, K., and Fukaya, T., Melatonin protects against oxidative mitochondrial damage induced in rat placenta by ischemia and reperfusion, J. Pineal Res., 2001, vol. 31(2), pp. 173–178. doi: 10.1034/j.1600-079x.2001.310212.x

  28. Reiter, R.J., Tan, D.X., Rosales-Corral, S., Galano, A., Zhou, M.J., and Hu, B., Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions, Molecule, 22018, vol. 3(2), p. 509. doi: 10.3390/molecules23020509

  29. Boden, M.J., Varcoe, T.J., and Kennaway, D.J., Circadian regulation of reproduction: from gamete to offspring, Prog. Biophys. Mol. Biol., 2013, vol. 113(3), pp. 387–397. doi: 10.1016/j.pbiomolbio.2013.01.003

  30. Lanoix, D., Guerin, P., and Vaillancourt, C., Placental melatonin production and melatonin receptor expression are alteed in preeclampsia: new insights into the role of this hormone in pregnancy, J. Pineal Res., 2012, vol. 53(4), pp. 417–425. doi: 10.1111/j.1600-079X.2012.01012x

  31. Iwasaki, S., Nakazawa, K., Sacai, J., Kometani, K., Iwashita, M., Yoshimura, Y., and Maruyama, I., Melatonin as local regulator of human placental function, J. Pineal Res., 2005, vol. 39(3), pp. 261–265. doi. 10.1111/j.1600-079X.2005.00244.x

  32. Sagrillo-Fagundes, L., Salustiano, E.M.A., Ruano, R., Markus, R.P., and Vaillancourt, C., Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation, J. Pineal Res., 2018, vol. 65(4), e12520. doi:10.1111/jpi.12520

  33. Valenzuela, F.J., Vera, J., Venegas, C., Pino, F., and Lagunas, C., Circadian system and melatonin hormone: risk factors for complications during pregnancy, Obstet. Gynecol. Int., 2015, 825802. doi:10.1155/2015/825802

  34. León, J., Acuña-Castroviejo, D., Escames, G., Tan, D.-X., and Reiter, R.J., Melatonin mitigates mitochondrial malfunction, J. Pineal Res., 2005, vol. 38(1), pp. 1–9. doi: 10.1111/j.1600-079X.2004.00181.x

  35. Tamura, H., Nakamura, Y., Terron, M.P., Flores, L.J., Manchester, L.S., Tan, D-X., Sugino, N., and Reiter, R.J., Melatonin and pregnancy in the human, Reprod. Toxicol., 2008, vol. 25(3), pp. 291–303. doi:10.1016/j.reprotox.2008.03.005

  36. Mark, P.J., Crew, R.C, Wharfe, M.D, and Waddell, B.J., Rhythmic three-part harmony: the complex interaction of maternal, placental and fetal circadian systems, J. Biol. Rhythms, 2017, vol. 32(6), pp. 534–549. doi: 10.1177/0748730417728671

  37. Edwards, S.M., Solveig, A., Dunlop, A.L., and Corwin, E.J., The maternal gut microbiome during pregnancy, MCN Am. J. Matern. Child Nurs., 2017, vol. 42(6), pp. 310–317. doi: 10.1097/NMC.0000000000000372

  38. Fox, C. and Eichelberger, K., Maternal microbiome and pregnancy outcomes, Fertil. Steril., 2015, vol. 104 (6), pp. 138–163. doi: 10.1016/j.fertnstert.2915.09.037

  39. Okatani, Y., Okamoto, K., Hayashi, K., Wakatsuki, A., Tamura, S., and Sagara, Y., Maternal-fetal transfer of melatonin in pregnant women near term, J. Pineal Res., 1998, vol. 125(3), pp. 129–134. doi: 10.1111/j.1600-079x.1998.tb00550.x

  40. Thomas, J.E., Purvis, C.C., Drew, J.E., Abramovich, D.R., and Williams, L.M., Melatonin receptors in human fetal brain: 2-[(125)]iodomelatonin binding and MT1 gene expression, J. Pineal Res., 2002, vol. 33(4), pp. 218–224. doi: 10.1034/j.1600-079x.2002.02921.x

  41. Williams, L.M., Hannah, L.T., Adam, C.L., and Bourke, D.A., Melatonin receptors in red deer fetuses (Cervus elaphus), J. Reprod. Fertil., 1997, vol. 110(1), pp. 145–151. doi:10.1530/jrf.0.1100145

  42. Peschke, E., Bahr, I., and Muhlbauer, E., Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon, Int. J. Mol. Sci., 2013, vol. 14(4), pp. 6981–7015. doi:10.3390/ijms.14046981

  43. Weaver, D.R., Rivkees, S.A., and Reppert, S.M., Localization and characterization of melatonin receptors in rodent brain, J. Neurosci., 1989, vol. 9(7), pp. 2581–2590. doi: 10.1523/JNEUROSCI.09-07-02581.1989

  44. Torres-Farfan, C., Richter, H.G., Rojas-Garci’a, P., Vergara, M., Forcelledo, M.L., Valladares, L.E., Torrealba, F., Valenzuela, G.J., and Serón-Ferré, M., mt1 Melatonin receptor in the primate adrenal gland: inhibit ion of adrenocorticotropin-stimulated cortisol production by melatonin, J. Clin. Endocrinol. Metab., 2003, vol. 88(1), pp. 450–458. doi: 10.1210/jc.2002-021048

  45. Yuan, H., Lu, Y., and Pang, S.F., Binding characteristics and regional distribution of [125I]iodomelatonin binding sites in the brain of the human fetus, Neurosci. Lett., 1991, vol. 130(2), pp. 229–232. doi: 10.1016/0304-3940(91)90403-g

  46. Williams, L.M., Martinoli, M.G., Titchener, L.T., and Pelletier, G., The ontogeny of central melatonin binding sites in the rat, Endocrinology, 1991, vol. 128(4), pp. 2083–2090. doi: 10.1210/endo-128-4-2083

  47. Liu, Y.J., Zhuang, J., Zhu, H.Y., Shen, Y.X., Tan, Z.L., and Zhou, J.N., Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm, J. Pineal Res., 2007, vol. 43(3), pp. 232–238. doi: 10.1111/j.1600-079X.2007.00466.x

  48. Wakatsuki, F., Okatani, Y., Shinohara, K., Ikenjue, N., Kaneda, C., and Fukaya, T., Melatonin protects fetal rat brain against oxidative mitochondrial damage, J. Pineal Res., 2001, vol. 30(1), pp. 22–28. doi: 10.1034/j.1600-079x.2001.300103.x

  49. Yu, X., Li, Z., Zheng, H., Ho, J., Chan, M.T.V., and Wu, W.K.K., Protective roles of melatonin in central nervous system diseases by regulation of neural stem cells, Cell Prolif., 2017, vol. 50(2), e12323. doi:10.1111/cpr.12323

  50. Kong, X., Li, X., Cai, Z., Yang, N., Liu, Y., Shu, J., Pan, L., and Zuo, P., Melatonin regulates the viability and differentiation of rat midbrain neural stem cells, Cell. Mol. Neurobiol., 2008, vol. 28(4), pp. 569–579. doi: 10.1007/s10571-007-9212-7

  51. Bavithra, S., Sugantha Priya, E., Selvakumar, K., Krichnamoorthly, G., and Arunakaran, J., Effect of melatonin on glucamate: BDNF signaling in the cerebral cortex of polychlorinated biphenyls (PCBs)-exposed adult male rats, Neurochem. Res., 2015, vol. 40(9), pp. 1858–1869. doi: 10.1007/s11064-015-1677-z

  52. Niles, L.P., Armstrong, K.J., Castro, L.M.R., Dao, C.V., Sharma, R., McMillan, C.R., Doering, L.C., and Kirkham, D.L., Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers, BMC Neurosci., 2004, vol. 5, p. 41. doi: 10.1186/1471-2202-5-41

  53. Sandyk, R., Melatonin and maturation of REM sleep, Int. J. Neurosci., 1992, vol. 63(1–2), pp. 105–114. doi: 10.3109/00207459208986660

  54. Jan, J.E., Reiter, R.J., Wasdell, M.B., and Bax, M., The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders, J. Pineal Res., 2009, vol. 46(1), pp. 1–7. doi: 10.1111/j.1600-079X.2008.00628.x

  55. Torres-Farfan, C., Valenzuela, F.J., Mondaca, M., Valenzuela, G.J., Krause, B., Herrera, E.A., Riquelme, R., Llanos, A.J., and Seron-Ferre, M., Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland, J. Physiol., 2008, vol. 586(16), pp. 4017–4027. doi: 10.1113/jphysiol.2008.154351

  56. Jimenez-Jorge, S., Guerrero, J.M., Jimenez-Caliani, A.J., Naranjo, M.C., Lardone, P.G., Carrillko-Vico, A., Osuna, C., and Molinero, P., Evidence for melatonin synthesis in the rat brain during development, J. Pineal Res., 2007, vol. 42(3), pp. 240–246. doi: 10.1111/j.1600-079X.2006.00411.x

  57. Sagrillo-Fagundes, L., Assuncao Salustiano, E.M., Yen, P.W., Soliman, A., and Vaillancourt, C., Melatonin in pregnancy: effects on brain development and CNS programming disorders, Curr. Pharm. Des., 2016, vol. 22(8), pp. 978–986. doi:10.2174/1381612822666151214104624

  58. Khelimskii, A.M., Epifiz: shishkovidnaya zheleza (Epiphysis: Pineal Gland), Moscow, 1969.

  59. Kovacikova, Z., Sladek, M., Bendova, Z., Illnerova, H., and Simova, A., Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development, Biol. Rhythms, 2006, vol. 21(2), pp. 140–148. doi: 10.1177/0748730405285876

  60. Seron-Ferre, M., Mendez, M., Abarzua-Catalan, L., Vilches, N., Valenzuela, F.J., Reynolds, H.E., Llanos, A.J., Rojas, A., Valenzuela, G.J., and Torres-Farfan, C., Circadian rhythms in the fetus, Mol. Cell. Endocrinol., 2012, vol. 349 (1), pp. 68–75. doi: 10.1016/j.mce.2011.07.039

  61. Weinert, D., Ontogenetic development of the mammalian circadian system, Chronobiol. Int., 2005, vol. 22(2), pp. 179–205. doi: 10.1081/cbi-200053473

  62. Colella, M., Biran, V., and Baud, O., Melatonin and the newborn brain, Early Hum. Dev., 2016, vol. 102, pp. 1–3. doi: 10.1016/j.earlhudev.2016.09.001

  63. Commentz, J.C., Henke, A., Dammann, O., Hellwege, H.H., and Willig, R.P., Decreasing melatonin and 6-hydroxymelatonin sulfate excretion with advancing gestational age in preterm and term newborn male infants, Eur. J. Endocrinol., 1996, vol. 135(2), pp. 184-187. doi: 10.1530/eje.0.1350184

  64. Thomas, J.E., Drew, D.R., Abramovich, D.R., and Williams, L.M., The role of melatonin in the human fetus (review), Int. J. Mol. Med., 1998, vol. 1(3), pp. 539–543. doi: 10.3892/ijmm.1.3.539

  65. Torres-Farfan, C., Seron-Ferre, M., Dinet, V., and Korf, H.W., Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin- deficient (C57BL) mice, J. Pineal Res., 2006, vol. 40(1), pp. 64–70. doi: 10.1111/j.1600-079X.2005.00279.x

  66. Arsianoglu, S., Bertino, E., Nicocia, M., and Moro, G.E., WARM working group on nutrition: potential chronobiotic role of human milk in sleep regulation, J. Perinat. Med., 2012, vol. 49(1), pp. 1–8. doi: 10.1515/jpm.2011.134

  67. Rath, M.F., Rohde, K., Fahrenkrug, J., and Moller, M., Circadian clock components in the rat neocortex: daily dynamics, localization and regulation, Brain Struct. Funct., 2013, vol. 218(2), pp. 551–562. doi: 10.1007/s00429-012-0415-4

  68. McGraw, K., Hoffmann, R., Harker, C., and Herman, J.H., The development of circadian rhythms in human infant, Sleep, 1999, vol. 22(3), pp. 303–310. doi: 10.1093/sleep/22.3.303

  69. Bubenik, G.A., Review: Gastrointestinal melatonin: localization, function and clinical relevance, Dig. Dis. Sci., 47(10), pp. 2336–2348. doi: 10.1023/a:1020107915919

  70. Tan, D.X, Manchester, L.C, Qin, L., and Reiter, R.J., Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics, Int. J. Mol. Sci., 2016, vol. 17(12), 2124. doi: 10.3390/ijms17122124

  71. Raikhlin, N.T. and Kvetnoy, I.M., Melatonin and enterochromaffine cells, Acta Histochem., 1976, vol. 55(1), pp. 19–24. doi: 10.1016/S0065-1281(76)80092-X

  72. Messner, M., Huether, G., Lorf, T., Ramadori, G., and Schwörer, H., Presence of melatonin in the human hepatobiliary-gastrointestinal tract, Life Sci., 2001, vol. 69(5), pp. 543–551. doi: 10.1016/s0024-3205(01)01143-2

  73. Shimozuma, M., Tokuyama, R., Tatehara, S., Umeki, H., Ide, S., Mishima, K., Saito, I., and Satomura, K., Expression and cellular localizaion of melatonin-synthesizing enzymes in rat and human salivary glands, Histochem. Cell Biol., 2011, vol. 135(4), pp. 389–396. doi: 10.1007/s00418-011-0800-8

  74. Konturek, S.J., Konturek, P.C., Brzozowski, T., and Bubenik, G.A., Role of melatonin in upper gastrointestinal tract, J. Physiol. Pharmacol., 2007, vol. 58( 6), pp. 23–52. PMID: 18212399

  75. Bubenic, J.A., Thirty four years since the discovery of gastrointestinal melatonin, J. Pysiol. Pharmacol., 2008, vol. 59(2), pp. 33–51. PMID: 18812627

  76. Kostyukevich, S.B., Histotopography and density of the location of endocrine cells of the epithelium of the colon mucosa of the human fetus, Morfol., 2004, vol. 26(5), pp. 52–55.

  77. Lolova, I.S., Davidoff, M.S., and Itzev, D.E., Histological and immunocytochemical data on the differentiation of intestinal endocrine cells in human fetus, Acta Physiol. Pharmacol. Bulg., 1998, vol. 23(3–4), pp. 61–71. PMID: 10672331

  78. Voiculescu, S.E., Zygouropoulos, N., Zahiu, C.D., and Zagrean, A.M., Role of melatonin in embryo fetal development, J. Med. Life, 2014, vol. 7(4), pp. 488–492. PMID: 25713608

  79. Pevet, P. and Challet, E., Melatonin: both master clock output and internal time-giver in the circadian clock network, J. Physiol. Paris, 2011, vol. 105(4–6), pp. 170–182. doi:10.1016/j.jphysparis.2011. 07.001

  80. Ramracheva, R.D., Muller, D.S., Squires, P.E., Brereton, H., Sugden, D., Huang, G.C., Amiel, S.A., Jones, P.M., and Persaud, S.J., Function and expression of melatonin receptors on human pancreatic islets, J. Pineal Res., 2008, vol. 44(3), pp. 273–279. doi: 10.1111/j.1600-079X.2007.00523.x

  81. Arendt, J., Melatonin and human rhythms, Chronobiol. Int., 2006, vol. 23(1–2), pp. 21–37. doi:10.1080/07420520500464361

  82. Mazzoccoli, G., Pazienza, V., and Vinciguerra, M., Clock genes and clock-controlled genes in the regulation of metabolic rhythms, Chronobiol. Int., 2012, vol. 29(3), pp. 227–251. doi:10.3109/07429528.2012.658127

  83. Polidarova, L., Olejnikova, L., Pauslyova, L., Sladek, M., Sotak, M., Pacha, J., and Sumova, A., Development and entrainment of the colonic circadian clock during ontogenesis, Am. J. Physiol. Gastrointest. Liver Physiol., 2014, vol. 306(4), pp. 346–356. doi:10.1152/ajpgi.00340.2013

  84. Nogueira, R.C. and Sampaio, L.F.S., Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos, J. Exp. Biol., 2017, vol. 220(Pt. 20), pp. 3826–3835. doi:10.1242/jeb.159848

  85. León, J., Acuña-Castroviejo, D., Escames, G., Tan, D.-X., and Reiter, R.J., Melatonin mitigates mitochondrial malfunction, J. Pineal Res., 2005, vol. 38(1), pp. 1–9. doi: 10.1111/j.1600-079X.2004.00181.x

  86. Zeman, M. and Herichova, I., Melatonin and clock genes expression in the cardiovascular system, Front. Biosci. (Schol Ed.), 2013, vol. 5, pp. 743–753. doi: 10.2741/s404

  87. Ekmekciogly, C., Thalhammer, T., Humpeler, S., Mehrabi, M.R., Glogar, H.D., Hölzenbein, T., Markovic, O., Leibetseder, V.J., Strauss-Blasche, G., and Marktl, W., The melatonin receptor subtype MT2 is present in the human cardiovascular system, J. Pineal Res., 2003, vol. 35(1), pp. 40–44. doi. 10.1034/j.1600-079X.2003.00051.x

  88. Carlomagno, G., Minini, M., Tilotta, M., and Unfer, V., From implantation to birth: insight into molecular melatonin functions, Int. J. Mol. Sci., 2018, vol. 19(9), 2802. doi: 10.3390/ijms19092802

  89. Cutz, E., Hyperplasia of pulmonary neuroendocrine cells in infancy and childhood, Semin. Diagn. Pathol., 2015, vol. 32(6), pp. 420–437. doi: 10.1053/j.semdp.2015.08.001

  90. Sunday, M.E., Pulmonary neuroendocrine cells and lung development, Endocr. Pathol., 1996, vol. 7(3), pp. 173–201. doi: 10.1007/BF02739921

  91. Mendez, N., Abarzua-Catalan, L., Vilches, N., Galdames, H.A., Spichiger, C., Richter, H.G., Valenzuela, G.J, Seron-Ferre, M., and Torres-Farfan, C., Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light, PLoS ONE, 2012, vol. 7(8), e42713. doi:1.1371/journal.pone.0042713

  92. Drew, J.E., Williams, L.M., Hannah, L.T., Barrett, P., Abramovich, D.R., and Morgan, P.J., Melatonin receptors in the human fetal kidney: 2-[125I]iodomelatonin binding sites correlated with expression of Mel1a and Mel1b receptor genes, J. Endocrinol., 1998, vol. 156, pp. 261–267.

  93. Seron-Ferre, M., Reynolds, H., Mendez, N.A., Mondaca, M., Valenzuela, F., Ebensperger, R., Valenzuela, G., Herrera, E.A., Llanos, A.J., and Torres-Farfan, C., Impact of maternal melatonin suppression on amount and functionality of brown adipose tissue (BAT) n the newborn sheep, Front. Endocrinol. (Lausanne), 2015, vol. 5, p. 232. doi:10.3389/fendo.2014.00232

  94. Ren, W., Liu, G., Chen, S., Yin, J., Wang, J., Tan, B., Wu, G., Bazer, F.W., Peng, Y., Li, T., Reiter, R.J., and Yin, Y., Melatonin signaling in T cells: functions and applications, J. Pineal Res., 2017, vol. 62(3), e12394. doi: 10.1111/jpi.12394

  95. Calvo, J.R., Gonzalez-Yanes, C., and Maldonado, M.D., The role of melatonin in the cells of the innate immunity: a review, J. Pineal Res., 2013, vol. 55(2), pp. 103–120. doi: 10.1111/jpi.12075

  96. Szczepanik, M., Melatonin and its influence on immune system, J. Physiol. Pharmacol., 2007, vol. 58 (Suppl. 6), pp.115–124. PMID: 18212405

  97. Di Bella, L. and Gualano, L., Key aspects of melatonin physiology: thirty years of research, Neuro Endocrinol. Lett., 2006, vol. 27(4), pp. 425–432. PMID: 16892002

  98. Roth, J.A., Kim, B.G., Lin, W.L., and Cho, M.I., Melatonin promotes osteoblast differentiation and bone formation, J. Biol. Chem., 1999, vol. 274(31), pp. 22041–22047. doi: 10.1074/jbc.274.31.22041

  99. Gunduz, B. and Stetson, M.H., Maternal transfer of photoperiodic information in Siberian hamsters. VI. Effects of time-dependent 1-hr melatonin infusions in the mother on photoperiod-induced testicular development of her offspring, J. Pineal Res., 2003, vol. 34(3), pp. 217–225. doi: 10.1034/j.1600-079x.2003.00035.x

  100. Nagai, R., Watanabe, K., Wakatsuki, A., Hamada, F., Shinohara, K., Hayashi, Y., Imamura, R., and Fukaya, T., Melatonin preserves fetal growth in rats by protecting against ischemia-reperfusion-induced oxidative-nitrosative mitochondrial damage in placenta, J. Pineal Res., 2008, vol. 45(3), pp. 271–276. doi:10.1111/j.1600-079X.2008.00586x

  101. Berbets, A., Koval, H., Barbe, A., Albota, O., and Yuzko, O., Melatonin decreases and cytokines increase in women with placental insufficiency, J. Matern. Fetal Neonatal. Med., 2019, vol. 1–6. doi:10.1080/1476058.2019.1608432

  102. Feng, P., Hu, Y., Vurbic, D., and Guo, Y., Maternal stress induces adult reduced REM sleep and melatonin level, Dev. Neurobiol., 2012, vol. 72(5), pp. 677–687. doi: 10.1002/dneu.20961

  103. Ferreira, D.S., Amaral, F.G., Mesquita, C.C., Barbosa, A.P.L., Lellis-Santos, C., Turati, A.O., Santos, L.R., Sollon, C.S., Gomes, P.R., Faria, J.A., Cipolla-Neto, J., Bordin, S., and Anhê, G.F., Maternal melatonin programs the daily pattern of energy metabolism in adult offspring, PLoS One, 2012, vol. 7(6), e38795. doi: 10.1371/journal.pone.0038795

  104. Korkmaz, A. and Reiter, R.J. Epigenetic regulation: a new research area for melatonin, J. Pineal Res., 2008, vol. 44(1), pp. 41–44. doi: 10.1111/j.1600-079X.2007.00509.x

  105. Korkmaz, A., Rosales-Corral, S., and Reiter, R.J., Gene regulation by melatonin linked to epigenetic phenomena, Gene, 2012, vol. 503(1), pp. 1–11. doi:10.1016/j.gene.2012.04.040

  106. Sharma, R., Ottenhof, T., Rzeczkowska, P.A., and Niles, L.P., Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells, J. Pineal Res., 2008, vol. 45(3), pp. 277–284. doi: 10.1111/j.1600-079X.2008.00587.x

  107. Galano, A., Tan, D.X., and Reiter, R.J., Melatonin: a versatile protector against oxidative DNA damage, Molecules, 2018, vol. 23(3), p. 530. doi: 10.3390/molecules23030530

  108. Tain, Y.-L., Huang, L.-T., and Hsu, C.-N., Developmental programming of adult disease: reprogramming by melatonin? Int. J. Mol. Sci., 2017, vol. 18(2), pp. 426–437. doi:10/3390/ijms18020426

  109. Cisternas, C.D., Compagnucci, M.V., Conti, N.R., Ponce, R.H., and Vermouth, N.T., Protective effect of maternal prenatal melatonin administration on rat pups born to mothers submitted to constant light during gestation, Braz. J. Med. Biol. Res., 2010, vol. 43(9), pp. 874–882. doi: 10.1590/s0100-879x2010007500083

  110. Perez-Gonzalez, A., Castaneda-Arriaga, R., Alvarez-Idaboy, J.R., Reiter, R.J., and Galano, A., Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA, J. Pineal Res., 2019, vol. 66(2), e12539. doi:10.1111/jpi.12539

  111. Ireland, K.E., Maloyan, A., and Myatt, L., Melatonin improves mitochondrial respiration in syncytiotrophoblasts from placentas of obese women, Reprod. Sci., 2018, vol. 25(1), pp. 120–130. doi: 101177/1933719117704908

  112. Chen, Y.-C., Sheen, J.M., Tiao, M.M., Tain, Y.L., and Huang, L.T., Roles of melatonin in fetal programming in compromised pregnancies, Int. J. Mol. Sci., 2013, vol. 14(3), pp. 5380–5401. doi:10.3390/ijms14035380

  113. Lopez, A., Garcia, J.A., Escames, G., Venegas, C., Ortiz, F., Lopez, L.C., and Acuna-Castroviejo, D., Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production, J. Pineal Res., 2009, vol. 46 (2), pp. 188–198. doi: 10.1111/j.1600-079X.2008.00647.x

  114. Xu, D.-X., Wang, H., Ning, H., Zhao, L., and Chen, Y.-H., Maternally administered melatonin differentially regulates lipopolysaccharide-induced pro-inflammatory and anti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetal brain, J. Pineal Res., 2007, vol. 43(1), pp. 74–79. doi:10.1111.j.1600-079X.2007.004445.x

  115. Carloni, C., Favrais, G., Saliba, E., Albertini, M.C., Chalon, C., Longini, M., Gressens, P., Buonocore, G., and Balduini, W., Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway, J. Pineal Res., 2016, vol. 61(3), pp. 370–380. doi: 10.1111/jpi.12354

  116. Olivier, P., Fontaine, R.H., Loron, G., Steenwinckel, J.V., Biran, V., Massonneau, V., Kaindl, A., Dalous, J., Charriaut-Marlangue, C., Aigrot, M.-S., Pansiot, J., Verney, C., Gressens, P., and Baud, O., Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats, PLoS ONE, 2009, vol. 4(9), e7128. doi: 10.1371/journal.pone.0007128

  117. Welin, A.-K., Svedin, P., Lapatto, R., Sultan, B., Hagberg, H., Gressens, P., Kjellmer, I., and Mallard, C., Melatonin reduces inflammation and cell death in white matter in the mid-gest.ation fetal sheep following umbilical cord occlusion, Pediatr. Res., 2007, vol. 61(2), pp. 153–158. doi: 10.1203/01.pdr.0000252546

  118. Yawno, T., Castillo-Melendez, M., Jenkin, G., Wallace, E.M., Walker, D.W., and Miller, S.L., Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia, Dev. Neurosci., 2012, vol. 34(6), pp. 543–551. 2012. doi:10.1159/000346323

  119. Miller, S.L, Yawno, T., Alers, N.O., Castillo-Melendez, M., Supramaniam, V.G., VanZyl, N., Sabaretnam, T., Loose, J.M., Drummond, G.R., Walker, D.W., Jenkin, G., and Wallace, E.M., Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction, J. Pineal Res., 2014, vol. 56(3), pp. 283–294. doi: 10.1111/jpi.12121

  120. Kaur, C., Sivakumar, Y., Zhang, Y., and Ling, E.A., Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum, Glia, 2006, vol. 54(8), pp. 826–839. doi: 10.1002/glia.20420

  121. Sivakumar, J., Lu, J., Ling, E.A., and Kaur, C., Vascular endothelial growth factor and nitric oxide production in response to hypoxia in the choroid plexus in neonatal brain, Brain Pathol., 2008, vol. 18(1), pp. 71–85. doi: 10.1111/j.1750-3639.2007.00104.x

  122. Kaur, C., Sivakumar, Y., Lu, J., Tang, F.R., Ling, E.A., Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus, Brain Pathol., 2008, vol. 18(4), pp. 533–547. doi: 10.1111/j.1750-3639.2008.00156.x

  123. El-Sokkary, G.H., Cuzzocrea, S., and Reiter, R.J., Effect of chronic nicotine administration on the rat lung and liver: beneficial role of melatonin, Toxicology, 2007, vol. 239(1–2), pp. 60–67. doi: 10.1016/j.tox.2007.06.092

  124. Liu, S., Guo, Y., Yuan, Q., Pan, Y., Wang, L., Liu, Q., Wang, F., Wang, J., and Hao, A., Melatonin prevents neural tube defects in the offspring of diabetic pregnancy, J. Pineal Res., 59(4):508-517. 2015. doi:10.1111/jpi.12282

  125. Lemley, C.O. and Vonnahme, R.A., Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle, J. Anim. Sci., 2017, vol. 95(5), pp. 2211–2221. doi:10.2527/jas.2016.1151

  126. Sales, F., Peralta, O.A., Narbona, E., McCoard, S., Gonzalez-Bulnes, A., and Parraquez, V.H., Rapid communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep, J. Anim. Sci., 2019, vol. 97(2), pp. 839–845. doi:10.1093/jas/sky443

  127. Tare, M., Parkington, H.C., Wallace, E.M., Sutherland, A.E., Lim, R., Yawno, T., Coleman, H.A., Jenkin, G., and Miller, S.L., Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs, J. Physiol., 2014, vol. 592(12), pp. 2695–2709. doi:10.1113/jphysiol.2014.270934

  128. Nawathe, A. and David, A.L., Prophylaxis and treatment of foetal growth restriction, Best Pract. Res. Clin. Obstet. Gynaecol., 2018, vol. 49, pp. 66–78. doi:10.1016/j.bpobgyn.2018.02.007

  129. Tan, D.X., Manchester, L.C., Qin, L., and Reiter, R.J., Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics, Int. J. Mol. Sci., 2016, vol. 17(12), 2124. doi: 10.3390/ijms17122124

  130. Welin, A.K., Svedin, P., Lapatto, R., Sultan, B., Hagberg, H., Gressens, P., Kjellmer, I., and Mallard, C., Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion, Pediatr. Res., 2007, vol. 61(2), pp. 153–158. doi: 10.1203/01.pdr.0000252546

  131. Parada, E., Buendia, I., Leon, R., Negredo, P., Romero, A., Cuadrado, A. Lopez, M.G., and Egea, J., Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression, J. Pineal Res., 2014, vol. 56(2), pp. 204–212. doi: 10.1111/jpi.12113

  132. Juan, W.-S., Huang, S.Y., Chang, C.C., Hung, Y.C., Lin, Y.W., Chen, T.Y., Lee, A.H., Lee, A.C., Wu, T.S., and Lee, E.J., Melatonin improves neuroplasticity by upregulating growth-associated protein-43(GAP-43) and NMDAR postsynaptic dencity-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period, J. Pineal Res., 2014, vol. 56(2), pp. 213–223. doi: 10.1111/jpi.12114

  133. Wilkinson, D., Shepherd, E., and Wallace, E.M., Melatonin for women in pregnancy for neuroprotection of the fetus, Cochrane Database Syst. Rev., 2016, vol. 3(3), p. CDO10527, doi:10.1002/14651858.CDO10527.pub2

  134. Marseglia, L., Manti, S., D’Angelo, G., Gitto, E., and Barberi, I., Melatonin for the newborn, J. Pediatr. Neonat. Individ. Med., 2014, vol. 3(2), e030232. doi: 10.7363/030232

  135. Aversa, S., Pellegrino, S., Barberi, I., Reiter, R.J., and Gitto, E., Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period, J. Matern. Fetal. Neonatal. Med., 2012, vol. 25(3), pp. 207–221. doi: 10.3109/14767058.2011.573827

  136. Tarocco, A., Caroccia, N., Morciano, G., Wieckowski, M.R., Ancora, G., Garani, G., and Pinton, P., Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care, Cell Death Dis., 2019, vol. 10(4), p. 317. doi:10.1038/s41419-019-1556-7

  137. Yurova, M.N., Tyndyk, M.L., Popovich, I.G., Golubev, A.G., and Anisimov, V.N., Gender-specific effects of neonatal administration of melatonin on lifespan and age-associated pathology in 129/SV mice, Adv. Gerontol., 32(1–2), pp. 66–75.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Evsyukova.

Additional information

Translated by A. Polyanovsky

The original online version of this article was revised: the issue date is not January 2020, but January 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evsyukova, I.I. The Role of Melatonin in Prenatal Ontogenesis. J Evol Biochem Phys 57, 33–45 (2021). https://doi.org/10.1134/S0022093021010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021010038

Keywords:

Navigation