Skip to main content
Log in

Effect of Photobiomodulation by Red and Infrared Laser Radiation on Motility of Paramecium caudatum

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

To evaluate the effects of photobiomodulation, we used laser devices with wavelengths of 662 nm (ALOD-01; Alcom Medica, Russia) and 808 nm (ALPH-01 Diolan; NPP VOLO, Russia) and an energy density of 1–15 J/cm2. The experiments were carried out on the infusoria Paramecium caudatum (Alveolata: Ciliophora: Oligohymenophora: Peniculia). The results were evaluated before as well as 5, 10, 30, 60 min and 24 h after irradiation. 5 min after exposure to red light (662 nm), motor activity of P. caudatum increased vs. control and then decreased within 60 minutes. 24 h after irradiation at an energy density of 15 J/cm2, the speed of P. caudatum was 52% of the initial (73% in the control) (p < 0.05). Immediately since exposure to infrared radiation (808 nm) and during the first hour, motor activity tended to decrease. 24 h later, the speed decrement was significantly less than in the control. The data obtained indicate that changes in the functional state of P. caudatum arise immediately after irradiation and persist for a long time, leading either to an increased (808 nm) or a decreased (662 nm) resistance at the same values of a radiation energy density. The peculiarities of the P. caudatum response to red vs. infrared radiation appear to be due to the differences between primary photoacceptors and appropriate signaling pathways, which come into action immediately upon their excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow, R.T., Dose dilemmas in low level laser therapy–the effects of different paradigms and historical perspectives, Laser Therapy, 2000, vol. 13, no. 1, pp. 102–109.

    Article  Google Scholar 

  2. Conlan, M.J., Rapley, J.W., and Cobb, C.M., Biostimulation of wound healing by low-energy laser irradiation, a review, J. Clin. Periodontol., 1996, vol. 23, no. 5, pp. 492–496.

    Article  CAS  PubMed  Google Scholar 

  3. Oron, U.Y.T., Oron, A., Mordechovitz, D., Shofti, R., Hayam, G., Dror, U., Gepstein, L., Wolf, T., Haudenschild, C., and Haim, S.B., Lowenergy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs, Circulation, 2001, no. 103, pp. 296–301.

    Article  CAS  PubMed  Google Scholar 

  4. De Freitas, L.F. and Hamblin, M.R., Proposed mechanisms of photobiomodulation or low-level light therapy, IEEE J. Sel. Top. Quantum Electron., 2016, vol. 22, no. 3, pp. 1–37.

    Article  CAS  Google Scholar 

  5. Lubart, R., Lavi, R., Friedmann, H., and Rochkind, S., Photochemistry and photobiology of light absorption by living cells, Photomed. Laser Surg., 2006, no. 24, pp. 179–185.

    Article  CAS  PubMed  Google Scholar 

  6. Bolton, P., Young, S., and Dyson, M., Macrophage responsiveness to light therapy with varying power and energy densities, Laser Ther., 1991, vol. 3, no. 3, pp. 105–111.

    Article  Google Scholar 

  7. Karu, T.I. and Kolyakov, S.F., Exact action spectra for cellular responses relevant to phototherapy, Photomed. Laser Surg., 2005, vol. 23, no. 4, pp. 355–361.

    Article  CAS  PubMed  Google Scholar 

  8. Lanzafame, R.J., Stadler, I., Kurtz, A.F., Connelly, R., Peter, T.A., Timothy, P.A., Brondon, P., and Olson, D., Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model, Lasers Surg. Med., 2007, vol. 39, no. 6, pp. 534–542.

    Article  PubMed  Google Scholar 

  9. Passarella, S. and Karu, T., Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation, J. Photochem. Photobiol. B, 2014, vol. 140, pp. 344–358.

    Article  CAS  PubMed  Google Scholar 

  10. Karu, T.I., Afanasyeva, N.I. Kolyakov, S.F., Pyatibrat, L.V., and Welser, L., Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm, IEEE J. Sel. Top. Quantum Electron., 2001, vol. 7, pp. 982–988.

    Article  CAS  Google Scholar 

  11. Lane, N., Cell biology: power games, Nature, 2006, vol. 443, pp. 901–903.

    Article  CAS  PubMed  Google Scholar 

  12. Shiva, S. and Gladwin, M.T., Shining a light on tissue NO stores: near infrared release of NO from nitrite and nitrosylated hemes, J. Mol. Cell. Cardiol., 2009, vol. 46, no. 1, pp. 1–3.

    Article  CAS  PubMed  Google Scholar 

  13. Hardie, R.C., Photosensitive TRPs, Mammalian Transient Receptor Potential (TRP) Cation Channels, Nilius, B. and Flockerzi, V., Eds., Switzerland, 2014, pp. 795–826.

  14. Mylonakis, E., Ausubel, F.M., Gilmore, M., and Casadeval, A., Recent Advances on Model Hosts, New York, 2012.

    Book  Google Scholar 

  15. Zhou, M., Xia, H., Xu, Y., Xin, N., Liu, J., and Zhang, S., Anesthetic action of volatile anesthetics by using Paramecium as a model, J. Huazhong Univ. Sci. Technol. Med. Sci., 2012, vol. 32, no. 3, pp. 410–414.

    Article  CAS  PubMed  Google Scholar 

  16. Saib, A., Berrebbah, H., Berredjem, M., and Djebara, M.R., Cytotoxic study of three derivatives amidophosphonates on alternative cellular model: Paramecium tetraurelia, Toxicol. Res., 2014, vol. 3, no. 5, pp. 395–399.

    Article  CAS  Google Scholar 

  17. Petrishchev, N.N., Yantareva, L.I., and Fokin, S.I., Dependence of the effect of infrared laser radiation on power flux density and functional state of a biological object (infusoria Spirostomum ambiguum), Lazer Med., 2005, vol. 9, no. 3, pp. 43–48.

    Google Scholar 

  18. Protisty: rukovodstvo po zoologii (Protists: Handbook of Zoology), Alimov, A.F., Ed., St. Petersburg, 2000.

  19. Amaroli, A., Ravera, S., Parker, S., Panfoli, I., Benedicenti, A., and Benedicenti, S., Effect of 808 nm diode laser on swimming behavior, food vacuole formation and endogenous ATP production of Paramecium primaurelia (Protozoa), Photochem. Photobiol., 2015, vol. 91, no. 5, pp. 1150–1155.

    Article  CAS  PubMed  Google Scholar 

  20. Svidersky, V.L., Lobzin, Yu.V., Gorelkin, V.S., and Plotnikova, S.I., Motor activity of infusoria: theoretical and practical aspects, Zh. Evol. Biokhim. Fiziol., 2007, vol. 43, no. 5, pp. 379–390.

    Google Scholar 

  21. Amaroli, A., Benedicenti, A., Ferrando, S., Parker, S., Selting, W., Gallus, L., and Benedicenti, S., Photobiomodulation by infrared diode laser: effects on intracellular calcium concentration and nitric oxide production of Paramecium, Photochem. Photobiol., 2016, vol. 91, no. 5, pp. 854–862.

    Article  CAS  Google Scholar 

  22. Tawada, K. and Oosawa, F., Responses of Paramecium to temperature change, J. Eukaryot. Microbiol., 1972, vol. 19, pp. 53–57.

    CAS  Google Scholar 

  23. Tuchin, V., Tissue optics and photonics: light–tissue interaction, J. Biomed. Photonics Eng., 2015, vol. 1, no. 2, pp. 98–135.

    Article  Google Scholar 

  24. Malvin, G.M., Cecava, N., and Nelin, L.D., Nitric oxide production and thermoregulation in Paramecium caudatum, Acta Protozool., 2003, vol. 42, pp. 259–267.

    CAS  Google Scholar 

  25. Roszer, T., The Biology of Subcellular Nitric Oxide, The Netherlands, 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Petrishchev.

Additional information

Original Russian Text © N.N. Petrishchev, G.V. Papayan, L.V. Chistyakova, A.V. Struy, D.R. Faizullina, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 6, pp. 406–412.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrishchev, N.N., Papayan, G.V., Chistyakova, L.V. et al. Effect of Photobiomodulation by Red and Infrared Laser Radiation on Motility of Paramecium caudatum. J Evol Biochem Phys 54, 457–464 (2018). https://doi.org/10.1134/S0022093018060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018060054

Key words

Navigation