Skip to main content
Log in

Comparative analysis of esterase and paraoxonase activities of different serum albumin species

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Enzymatic activities of three types of serum albumin—rat, bovine and human—were analyzed comparatively using a mathematical model. Kinetic and equilibrium constants of carboxylesterase and paraoxonase activities of albumin in Sudlow’s sites I and II were determined. The effects of specific ligands, ibuprofen and warfarin, on enzyme kinetics in these sites were studied. Ibuprofen was found to have an inhibitory effect both on carboxylesterase and paraoxonase albumin activities, whereas warfarin specifically inhibited only carboxylesterase albumin activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McWilliam, J.A., Remarks on a new test for albumin and other proteids, Brit. Med. J., 1891, vol. 1, no. 1581 pp. 837–840.

    Article  Google Scholar 

  2. Atkinson, J.F., A preliminary note on the fractional precipitation of the globulin and albumin of normal horse’s serum and diphtheric antitoxic serum, and the antitoxic strength of the precipitates, J. Exp. Med., 1899, vol. 4, nos. 5–6, pp. 649–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He, X. M. and Carter, D.C., Atomic structure and chemistry of human serum albumin, Nature, 1992, vol. 358, no. 6383 pp. 209–215.

    Article  CAS  PubMed  Google Scholar 

  4. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., and Kobayashi, K., Crystal structure of human serum albumin at 2.5 Å resolution, Protein Engin., 1999, vol. 12, no. 6 pp. 439–446.

    Article  CAS  Google Scholar 

  5. Majorek, K.A., Porebski, P.J., Dayal, A., Zimmerman, M.D., Jablonska, K., Stewart, A.J., Chruszcz, M., and Minor, W., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins, Mol. Immunol., 2012, vol. 52, no. 3 pp. 174–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goncharov, N.V., Belinskaya, D.A., Razygraev, A.V., and Ukolov, A.I., On the enzymatic activity of albumin, Bioorg. Khim., 2015, vol. 41, no. 2 pp. 131–144.

    CAS  PubMed  Google Scholar 

  7. Consortium, T.U., UniProt: a hub for protein information, Nucleic Acids Res., 2015, vol. 43, pp. 204–212.

    Article  Google Scholar 

  8. Strauss, A.W., Bennett, C.D., Donohue, A.M., Rodkey, J.A., and Alberts, A.W., Rat liver pre-proalbumin: complete amino acid sequence of the prepiece. Analysis of the direct translation product of albumin messenger RNA, J. Biol. Chem., 1977, vol. 252, no. 19 pp. 6846–6855.

    CAS  PubMed  Google Scholar 

  9. Bujacz, A., Structures of bovine, equine and leporine serum albumin, Acta Crystallogr. D Biol. Crystallogr., 2012, vol. 68, no. 10 pp. 1278–1289.

    Article  CAS  PubMed  Google Scholar 

  10. Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A.A., Otagiri, M., and Curry, S., Structural basis of the drug-binding specificity of human serum albumin, J. Mol. Biol., 2005, vol. 353, no. 1 pp. 38–52.

    Article  CAS  PubMed  Google Scholar 

  11. Strausberg, R.L., et al., Rattus norvegicus albumin, mRNA (cDNA clone MGC:105327 IMAGE: 7303856), complete cds. 2006.

    Google Scholar 

  12. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G., Fast, scalable generation of highquality protein multiple s equence alignments using Clustal Omega, Mol. Syst. Biol., 2011, vol. 7, p. 539.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ascenzi, P., Bocedi, A., Notari, S., Fanali, G., Fesce, R., and Fasano, M., Allosteric modulation of drug binding to human serum albumin, Mini Rev. Med. Chem., 2006, vol. 6, no. 4 pp. 483–489.

    Article  CAS  PubMed  Google Scholar 

  14. Ascenzi, P. and Fasano, M., Allostery in a monomeric protein: the case of human serum albumin, Biophys. Chem., 2010, vol. 148, pp. 16–22.

    Article  CAS  PubMed  Google Scholar 

  15. Reichenwallner, J. and Hinderberger, D., Using bound fatty acids to disclose the functional structure of serum albumin, Biochim. Biophys. Acta, 2013, vol. 1830, no. 12 pp. 5382–5393.

    Article  CAS  PubMed  Google Scholar 

  16. Ascenzi, P., Leboffe, L., di Masi, A., Trezza, V., Fanali, G., Gioia, M., Coletta, M., and Fasano, M., Ligand Binding to the FA3-FA4 Cleft Inhibits the Esterase-Like Activity of Human Serum Albumin, PloS One, 2015, vol. 10, no. 3 pp. 1–16.

    Article  Google Scholar 

  17. Bender, M.L., Kezdy, F.J., and Wedler, F.C., Alpha-Chymotrypsin: Enzyme concentration and kinetics, J. Chem. Educ., 1967, vol. 44, no. 2 pp. 84–88.

    Article  CAS  PubMed  Google Scholar 

  18. De Caro, J.D., Rouimi, P., and Rovery, M., Hydrolysis of p-nitrophenyl acetate by the peptide chain fragment (336–449) of porcine pancreatic lipase, Eur. J. Biochem., 1986, vol. 158, pp. 601–607.

    Article  PubMed  Google Scholar 

  19. Main, A.R., Affinity and phosphorylation constants for the inhibition of esterases by organophosphates, Science, 1964, vol. 144, no. 3621 pp. 992–993.

    Article  CAS  PubMed  Google Scholar 

  20. Pérez, F. and Granger, B.E., IPython: a system for interactive scientific computing, Computing in Science & Engineering, 2007, vol. 9, no. 3 pp. 21–29

    Article  Google Scholar 

  21. Van Der Walt, S., Colbert, S.C., and Varoquaux, G., The NumPy array: a structure for efficient numerical computation, Computing in Science & Engineering, 2011, vol. 13, no. 2 pp. 22–30.

    Article  Google Scholar 

  22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Vanderplas, J., Scikit-learn: Machine learning in Python, J. Machine Learn. Res., 2011, vol. 12, pp. 2825–2830.

    Google Scholar 

  23. Hunter, J.D., Matplotlib: A 2D graphics environment, Computing in Science & Engineering, 2007, vol. 9, no. 3 pp. 90–95.

    Article  Google Scholar 

  24. McKinney, W., Data structures for statistical computing in python, Proc. 9th Python in Science Conf., 2010, vol. 445, pp. 51–56.

    Google Scholar 

  25. Lockridge, O., Xue, W., Gaydess, A., Grigoryan, H., Ding, S.J., Schopfer, L.M., Hinrichs, S.H., and Masson, P., Pseudo-esterase activity of human albumin slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines, J. Biol. Chem., 2008, vol. 283, pp. 22 582–22 590.

    Article  CAS  Google Scholar 

  26. Galantini, L., Leggio, C., Konarev, P.V., and Pavel, N.V., Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea, Biophys. Chem., 2010, vol. 147, no. 3 pp. 111–122.

    Article  CAS  PubMed  Google Scholar 

  27. Belinskaya, D.A., Shmurak, V.I., Prokofyeva, D.S., and Goncharov, N.V., A study of soman binding with albumin by methods of molecular modeling, Toksikol. Vestn., 2012, no. 6 pp. 13–19.

    Google Scholar 

  28. Belinskaya, D.A., Shmurak, V.I., Prokofyeva, D.S., and Goncharov, N.V., Serum albumin: a search for novel sites of interaction with organophosphorous compounds as exemplified by soman, Bioorg. Khim., 2014, vol. 40, no. 5 pp. 541–549.

    Google Scholar 

  29. Marangoni, A.G., Mechanism-based inhibition, Enzyme Kinetics: a Modern Approach, John Wiley & Sons, 2003, pp. 158–173.

    Google Scholar 

  30. Schmidt, N.D., Peschon, J.J., and Segel, I.H., Kinetics of enzymes subject to very strong product inhibition: Analysis using simplified integrated rate equations and average velocities, J. Theor. Biol., 1983, vol. 100, no. 4 pp. 597–611.

    Article  CAS  PubMed  Google Scholar 

  31. Means, G.E. and Bender, M.L., Acetylation of human serum albumin by p-nitrophenyl acetate, Biochemistry, 1975, vol. 14, no. 22 pp. 4989–4994.

    Article  CAS  PubMed  Google Scholar 

  32. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., and Ascenzi, P., The extraordinary ligand binding properties of human serum albumin, IUBMB Life, 2005, vol. 57, no. 12 pp. 787–796.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, R.C., Toxicokinetic aspects of nerve agents and vesicants, Handbook of Toxicology of Chemical Warfare Agents, Academic Press, 2015, pp. 817–856.

    Google Scholar 

  34. Yamasaki, K., Chuang, V.T., Maruyama, T., and Otagiri, M., Albumin-drug interaction and its clinical implication, Biochim. Biophys. Acta (BBA)-General Subjects, 2013, vol. 1830, no. 12 pp. 5435–5443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Goncharov.

Additional information

Original Russian Text © N.V. Goncharov, M.A. Terpilovskii, V.I. Shmurak, D.A. Belinskaya, P.V. Avdonin, 2017, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2017, Vol. 53, No. 4, pp. 241—250.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, N.V., Terpilovskii, M.A., Shmurak, V.I. et al. Comparative analysis of esterase and paraoxonase activities of different serum albumin species. J Evol Biochem Phys 53, 271–281 (2017). https://doi.org/10.1134/S0022093017040032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093017040032

Keywords

Navigation