Skip to main content
Log in

Functional role of membrane-bound adenylyl cyclases and coupled to them receptors and G-proteins in regulation of fertility of spermatozoa

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The cAMP-dependent signaling cascades play the key role in regulation of fertility of spermatozoa. Synthesis of cAMP in spermatozoa is realized both by soluble, and by transmembrane (membrane-bound) forms of adenylyl cyclases (AC). For the recent years numerous data appeared about the presence in spermatozoa at different stages of their maturation of a wide spectrum isoforms of membrane-bound AC and their regulation by hormones and hormone-like substances via the coupled to B-proteins receptors (GPCR). Agonists of GPCR in spermatozoa can be adenosine, biogenic amines, peptide hormones, odorants. Study of structural-functional organization and regulatory properties of AC of the signal system in spermatozoa is of great practical significance for reproductive technologies, as via the membrane-bound AC forms and signal cascades there are controlled such processes as motility and chemotaxis of spermatozoa, their capability for capacitation acrosomal reaction. In the review there are summarized and analyzed data on functioning and role of AC of signal system in spermatozoa of human and vertebrate animals and are discussed achievements and unsolved problems in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AdenR:

adenosine receptor

ACE:

angiotensin-converting enzyme

AP:

adrenergic receptor

AC:

adenylyl cyclase

ACSS:

adenylyl cyclase signaling system

GIDP:

5′-guanosine imidodiphosphate

GTPγS:

guanosine-5′-O-thiotriphosphate

PT:

pertussis toxin

MR:

melatonin receptor

sAC:

soluble adenylyl cyclase

SR:

serotonin receptor

tmAC:

transmembrane (membrane-bound) adenylyl cyclase

CT:

cholera toxin

FPP:

fertilization promoting peptide

GPCR:

G protein-coupled receptor)

MRP4:

multidrug resistance associated protein 4

References

  1. Abou-haila, A. and Tulsiani, D.R., Signal transduction pathways that regulate sperm capacitation and the acrosome reaction, Arch. Biochem. Biophys., 2009, vol. 485, pp. 72–81.

    PubMed  CAS  Google Scholar 

  2. Bailey, J.L., Factors regulating sperm capacitation, Syst. Biol. Reprod. Med., 2010, vol. 56, pp. 334–348.

    PubMed  CAS  Google Scholar 

  3. Signorelli, J., Diaz, E.S., and Morales, P., Kinases, phosphatases and proteases during sperm capacitation, Cell. Tissue Res., 2012, vol. 349, pp. 765–782.

    PubMed  CAS  Google Scholar 

  4. Kamenetsky, M., Middelhaufe, S., Bank, E.M., Levin, L.R., Buck, J., and Steegborn, C., Molecular details of cAMP generation in mammalian cells: a tale of two systems, J. Mol. Biol., 2006, vol. 362, pp. 623–639.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Sinha, S.C. and Sprang, S.R., Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases, Rev. Physiol. Biochem. Pharmacol., 2006, vol. 157, pp. 105–140.

    PubMed  CAS  Google Scholar 

  6. Shpakov, A.O., Structure-functional organization of adenylyl cyclases of unicellular eukaryotes and molecular mechanisms of their regulation, Cell Tissue Biol., 2007, vol. 1, pp. 97–114.

    Google Scholar 

  7. Shpakov, A.O. and Pertseva, M.N., Signaling systems of lower eukaryotes and their evolution, Int. Rev. Cell Mol. Biol., 2008, vol. 269, pp. 151–282.

    PubMed  CAS  Google Scholar 

  8. Buck, J., Sinclair, M.L., Schapal, L., Cann, M.J., and Levin, L.R., Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 79–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sincler, M.L., Levin, L.R., and Buck, J., Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor, Science, 2000, vol. 289, pp. 625–628.

    PubMed  CAS  Google Scholar 

  10. Acin-Perez, R., Salazar, E., Brosel, S., Yang, H., Schon, E.A., and Manfredi, G., Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects, EMBO Mol. Med., 2009, vol. 1, pp. 392–406.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Kumar, S., Kostin, S., Flacke, J.P., Reusch, H.P., and Ladilov, Y., Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells, J. Biol. Chem., 2009, vol. 284, pp. 14 760–14 768.

    CAS  Google Scholar 

  12. Chen, J., Levin, L.R., and Buck, J., Role of soluble adenylyl cyclase in the heart, Am. J. Physiol., 2012, vol. 302, pp. H538–543.

    CAS  Google Scholar 

  13. Jaiswal, B.S. and Conti, M., Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase, J. Biol. Chem., 2001, vol. 276, pp. 31 698–31 708.

    CAS  Google Scholar 

  14. Jaiswal, B.S. and Conti, M., Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 10 676–10 681.

    CAS  Google Scholar 

  15. Derkach, K.V., Shpakov, A.O., and Gryaznov, A.Yu., Reguratory properties of cytosol and membrane-bound adenylyl cyclases in fractions of spermatozoa with different motility, Dokl. RAN, 2012, vol. 445, no. 4, pp. 468–470.

    Google Scholar 

  16. Shpakov, A.O., Derkach, K.V., Gryaznov, A.Yu. and Motovilova, N.O., Regulatory properties of adenylyl cyclase and guanylyl cyclasein human spermatozoa, Zh. Evol. Biokhim. Fiziol., 2013, vol. 49, no. 1, pp. 30–38.

    PubMed  CAS  Google Scholar 

  17. Geng, W., Wang, Z., Zhang, J., Reed, B.Y., Pak, C.Y., and Moe, O.W., Cloning and characterization of the human soluble adenylyl cyclase, Am. J. Physiol., 2005, vol. 288, pp. C1305–1316.

    CAS  Google Scholar 

  18. Tresguerres, M., Levin, L.R., and Buck, J., Intracellular cAMP signaling by soluble adenylyl cyclase, Kidney Int., 2011, vol. 79, pp. 1277–1288.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Shpakov, A.O. and Derkach, K.V., Soluble forms of adenylyl cyclases of spermatozoa, Tsitologiya, 2014, vol. 56, no. 1, pp. 5–13.

    CAS  Google Scholar 

  20. Bentley, J.K., Garbers, D.L., Domino, S.E., Noland, T.D., and Van Dop, C., Spermatozoa contain a guanine nucleotide-binding protein ADP-ribosylated by pertussis toxin, Biochem. Biophys. Res. Commun., 1986, vol. 138, pp. 728–734.

    PubMed  CAS  Google Scholar 

  21. Kopf, G.S., Woolkalis, M.J., and Gerton, G.L., Evidence for a guanine nucleotide-binding regulatory protein in invertebrate and mammalian sperm: identification by islet-activating protein-catalyzed ADP-ribosylation and immunochemical methods, J. Biol. Chem., 1986, vol. 261, pp. 7327–7331.

    PubMed  CAS  Google Scholar 

  22. Monks, N.J., Stein, D.M., and Fraser, L.R., Adenylate cyclase activity of mouse sperm during capacitation in vitro: effect of calcium and a GTP analogue, Int. J. Androl., 1986, vol. 9, pp. 67–76.

    PubMed  CAS  Google Scholar 

  23. Endo, Y., Lee, M.A., and Kopf, G.S., Evidence for the role of a guanine nucleotide-binding regulatory protein in the zona pellucida-induced mouse sperm acrosome reaction, Dev. Biol., 1987, vol. 119, pp. 210–216.

    PubMed  CAS  Google Scholar 

  24. Shpakov, A.O., Molecular determinants in receptors of serpentine type responsible for their coupling to heterotrimeric G-proteins, Tsitologiya, 2002, vol. 44, no. 3, pp. 242–258.

    CAS  Google Scholar 

  25. Shpakov, A.O., Participation of charged amino acid residues of cytoplasmic loops of receptors in process of transduction of hormonal signal, Zh. Evol. Biokhim. Fiziol., 2003, vol. 39, no. 3, pp. 205–217.

    PubMed  CAS  Google Scholar 

  26. Gudermann, T., Kalkbrenner, F., and Schultz, G., Diversity and selectivity of receptor-G protein interaction, Annu. Rev. Pharmacol. Toxicol., 1996, vol. 36, pp. 429–460.

    PubMed  CAS  Google Scholar 

  27. Ostrom, R.S., Bogard, A.S., Gros, R., and Feldman, R.D., Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps, Naunyn Schmiedebergs Arch. Pharmacol., 2012, vol. 385, pp. 5–12.

    PubMed  CAS  Google Scholar 

  28. Seamon, K.B. and Daly, J.W., Forskolin: a unique diterpene activator of cyclic AMP-generating systems, J. Cyclic Nucleotide Res., 1981, vol. 7, pp. 201–224.

    PubMed  CAS  Google Scholar 

  29. Vijayaraghavan, S. and Hoskins, D.D., Forskolin stimulates bovine epididymal sperm motility and cyclic AMP levels, J. Cyclic Nucleotide Protein Phosphor. Res., 1985, vol. 10, pp. 499–510.

    PubMed  CAS  Google Scholar 

  30. Fraser, L.R., Pondel, M.D., and Vinson, G.P., Calcitonin, angiotensin II and FPP significantly modulate mouse sperm function, Mol. Hum. Reprod., 2001, vol. 7, pp. 245–253.

    PubMed  CAS  Google Scholar 

  31. Baxendale, R.W. and Fraser, L.R., Evidence for multiple distinctly localized adenylyl cyclase isoforms in mammalian spermatozoa, Mol. Reprod. Dev., 2003, vol. 66, pp. 181–189.

    PubMed  CAS  Google Scholar 

  32. Spehr, M., Schwane, K., Riffell, J.A., Barbour, J., Zimmer, R.K., Neuhaus, E.M., and Hatt, H., Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis, J. Biol. Chem., 2004, vol. 279, pp. 40194–40203.

    PubMed  CAS  Google Scholar 

  33. Wertheimer, E., Krapf, D., Vega-Beltran, J.L., Sánchez-Cárdenas, C., Navarrete, F., Haddad, D., Escoffier, J., Salicioni, A.M., Levin, L.R., Buck, J., Mager, J., Darszon, A., and Visconti, P.E., Compartmentalization of distinct cAMP signaling pathways in mammalian sperm, J. Biol. Chem., 2013, PMID: 24129574. doi: 10.1074/jbc. M113.489476.

    Google Scholar 

  34. Derkach, K.V., Shpakov, A.O., and Gryaznov, A.Yu., Functional activity of adenylyl cyclase and guanylyl cyclase in kuman spermatozoa with different motility, Tsitologiya, 2013, vol. 55, no. 2, pp. 123–130.

    CAS  Google Scholar 

  35. Leclerc, P. and Kopf, G.S., Evidence for the role of heterotrimeric guanine nucleotide-binding regulatory proteins in the regulation of the mouse sperm adenylyl cyclase by the egg’s zona pellucida, J. Androl., 1999, vol. 20, pp. 126–134.

    PubMed  CAS  Google Scholar 

  36. Leclerc, P. and Kopf, G.S., Mouse sperm adenylyl cyclase: general properties and regulation by the zona pellucida, Biol. Reprod., 1995, vol. 52, pp. 1227–1233.

    PubMed  CAS  Google Scholar 

  37. Wade, M.A., Roman, S.D., Jones, R.C., and Aitken, R.J., Adenylyl cyclase isoforms in rat testis and spermatozoa from the cauda epididymidis, Cell. Tissue Res., 2003, vol. 314, pp. 411–419.

    PubMed  CAS  Google Scholar 

  38. Wang, H. and Storm, D.R., Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system, Mol. Pharmacol., 2003, vol. 63, pp. 463–468.

    PubMed  Google Scholar 

  39. Wong, S.T., Trinh, K., Hacker, B., Chan, G.C., Lowe, G., Gaggar, A., Xia, Z., Gold, G.H., and Storm, D.R., Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice, Neuron, 2000, vol. 27, pp. 487–497.

    PubMed  CAS  Google Scholar 

  40. Livera, G., Xie, F., Garcia, M.A., Jaiswal, B., Chen, J., Law, E., Storm, D.R., and Conti, M., Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function, Mol. Endocrinol., 2005, vol. 19, pp. 1277–1290.

    PubMed  CAS  Google Scholar 

  41. Defer, N., Marinx, O., Poyard, M., Lienard, M.O., Jegou, B., and Hanoune, J., The olfactory adenylyl cyclase type 3 is expressed in male germ cells, FEBS Lett., 1998, vol. 424, pp. 216–220.

    PubMed  CAS  Google Scholar 

  42. Gautier-Courteille, C., Salanova, M., and Conti, M., The olfactory adenylyl cyclase III is expressed in rat germ cells during spermiogenesis, Endocrinology, 1998, vol. 139, pp. 2588–2599.

    PubMed  CAS  Google Scholar 

  43. Spehr, M., Gisselmann, G., Poplawski, A., Riffell, J.A., Wetzel, C.H., Zimmer, R.K., and Hatt, H., Identification of a testicular odorant receptor mediating human sperm chemotaxis, Science, 2003, vol. 299, pp. 2054–2058.

    PubMed  CAS  Google Scholar 

  44. Olsson, P. and Laska, M., Human male superiority in olfactory sensitivity to the sperm attractant odorant bourgeonal, Chem. Senses, 2010, vol. 35, pp. 427–432.

    PubMed  CAS  Google Scholar 

  45. Kjeldmand, L., Salazar, L.T., and Laska, M., Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys, J. Comp. Physiol., 2011, vol. 197, pp. 15–23.

    CAS  Google Scholar 

  46. Glassner, M., Jones, J., Kligman, I., Woolkalis, M.J., Gerton, G.L., and Kopf, G.S., Immunocytochemical and biochemical characterization of guanine nucleotide-binding regulatory proteins in mammalian spermatozoa, Dev. Biol., 1991, vol. 146, pp. 438–450.

    PubMed  CAS  Google Scholar 

  47. Karnik, N.S., Newman, S., Kopf, G.S., and Gerton, G.L., Developmental expression of G protein alpha subunits in mouse spermatogenic cells: evidence that Gαi is associated with the developing acrosome, Dev. Biol., 1992, vol. 152, pp. 393–402.

    PubMed  CAS  Google Scholar 

  48. Ward, C.R., Storey, B.T., and Kopf, G.S., Selective activation of Gi1 and Gi2 in mouse sperm by the zona pellucida, the egg’s extracellular matrix, J. Biol. Chem., 1994, vol. 269, pp. 13254–13258.

    PubMed  CAS  Google Scholar 

  49. Ning, X., Ward, C.R., and Kopf, G.S., Activation of a Gi protein in digitonin/cholate-solubilized membrane preparations of mouse sperm by the zona pellucida, an egg-specific extracellular matrix, Mol. Reprod. Dev., 1995, vol. 40, pp. 355–363.

    PubMed  CAS  Google Scholar 

  50. Fraser, L.R. and Adeoya-Osiguwa, S.A., Modulation of adenylyl cyclase by FPP and adenosine involves stimulatory and inhibitory adenosine receptors and G-proteins, Mol. Reprod. Dev., 1999, vol. 53, pp. 459–471.

    PubMed  CAS  Google Scholar 

  51. Fraser, L.R., Adeoya-Osiguwa, S.A., and Baxendale, R.W., First messenger regulation of capacitation via G protein-coupled mechanisms: a tale of serendipity and discovery, Mol. Hum. Reprod., 2003, vol. 9, pp. 739–748.

    PubMed  CAS  Google Scholar 

  52. Minelli, A., Allegrucci, C., Piomboni, P., Mannucci, R., Lluis, C., and Franco, R., Immunolocalization of A1 adenosine receptors in mammalian spermatozoa, J. Histochem. Cytochem., 2000, vol. 48, pp. 1163–1171.

    PubMed  CAS  Google Scholar 

  53. Adeoya-Osiguwa, S.A., and Fraser, L.R., Capacitation state-dependent changes in adenosine receptors and their regulation of adenylyl cyclase/cAMP, Mol. Reprod. Dev., 2002, vol. 63, pp. 245–255.

    PubMed  CAS  Google Scholar 

  54. Osycka-Salut, C., Diez, F., Burdet, J., Gervasi, M.G., Franchi, A., Bianciotti, L.G., Davio, C., and Perez-Martinez, S., Cyclic AMP efflux, via MRPs and A1 adenosine receptors, is critical for bovine sperm capacitation, Mol. Hum. Reprod., 2013, PMID: 23907162. doi: 10.1093/molehr/gat053.

    Google Scholar 

  55. Minelli, A., Bellezza, I., Collodel, G., and Fredholm, B.B., Promiscuous coupling and involvement of protein kinase C and extracellular signal-regulated kinase 1/2 in the adenosine A1 receptor signalling in mammalian spermatozoa, Biochem. Pharmacol., 2008, vol. 75, pp. 931–941.

    PubMed  CAS  Google Scholar 

  56. Minelli, A., Liguori, L., Bellazza, I., Mannucci, R., Johansson, B., and Fredholm, B.B., Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity, J. Androl., 2004, vol. 25, pp. 286–292.

    PubMed  CAS  Google Scholar 

  57. Fredholm, B.B., Chen, J.F., Masino, S.A., and Vaugeois, J.M., Action of adenosine at its receptors in the CNS: insights from knockouts and drugs, Annu. Rev. Pharmacol. Toxicol., 2005, vol. 45, pp. 385–412.

    PubMed  CAS  Google Scholar 

  58. Burnett, L.A., Blais, E.M., Unadkat, J.D., Hille, B., Tilley, S.L., and Babcock, D.F., Testicular expression of Adora3i2 in Adora3 knockout mice reveals a role of mouse A3Ri2 and human A3Ri3 adenosine receptors in sperm, J. Biol. Chem., 2010, vol. 285, pp. 33662–33670.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Vijayaraghavan, S. and Hoskins, D.D., Regulation of bovine sperm motility and cyclic adenosine 3′,5′-monophosphate by adenosine and its analogues, Biol. Reprod., 1986, vol. 34, pp. 468–477.

    PubMed  CAS  Google Scholar 

  60. Aitken, R.J., Mattei, A., and Irvine, S., Paradoxical stimulation of human sperm motility by 2-deoxyadenosine, J. Reprod. Fertil., 1986, vol. 78, pp. 515–527.

    PubMed  CAS  Google Scholar 

  61. Fenichel, P., Gharib, A., Emiliozzi, C., Donzeau, M., and Menezo, Y., Stimulation of human sperm during capacitation in vitro by an adenosine agonist with specificity for A2 receptors, Biol. Reprod., 1996, vol. 54, pp. 1405–1411.

    PubMed  CAS  Google Scholar 

  62. Allegrucci, C., Liguori, L., and Minelli, A., Stimulation by N6-cyclopentyladenosine of A1 adenosine receptors, coupled to Gαi2 protein subunit, has a capacitative effect on human spermatozoa, Biol. Reprod., 2001, vol. 64, pp. 1653–1659.

    PubMed  CAS  Google Scholar 

  63. Adeoya-Osiguwa, S.A. and Fraser, L.R., Fertilization promoting peptide and adenosine, acting as first messengers, regulate cAMP production and consequent protein tyrosine phosphorylation in a capacitation-dependent manner, Mol. Reprod. Dev., 2000, vol. 57, pp. 384–392.

    PubMed  CAS  Google Scholar 

  64. Somanath, P.R., Jack, S.L., and Vijayaraghavan, S., Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation, J. Androl., 2004, vol. 25, pp. 605–617.

    PubMed  CAS  Google Scholar 

  65. Mededovic, S. and Fraser, L.R., Angiotensin II stimulates cAMP production and protein tyrosine phosphorylation in mouse spermatozoa, Reproduction, 2004, vol. 127, pp. 601–612.

    PubMed  CAS  Google Scholar 

  66. Fraser, L.R., Fertilization promoting peptide: an important regulator of sperm function in vivo?, Rev. Reprod., 1998, vol. 3, pp. 151–154.

    PubMed  CAS  Google Scholar 

  67. Adeoya-Osiguwa, S.A. and Fraser, L.R., Calcitonin acts as a first messenger to regulate adenylyl cyclase/cAMP and mammalian sperm function, Mol. Reprod. Dev., 2003, vol. 65, pp. 228–236.

    PubMed  CAS  Google Scholar 

  68. Fraser, L.R., Adeoya-Osiguwa, S., Baxendale, R.W., Mededovic, S., and Osiguwa, O.O., First messenger regulation of mammalian sperm function via adenylyl cyclase/cAMP, J. Reprod. Dev., 2005, vol. 51, pp. 37–46.

    PubMed  CAS  Google Scholar 

  69. Yanagimachi, R., Mammalian fertilization, In: The Physiology of Reproduction, 2nd Edition, Knobil, E. and Neil, J.D., Eds., N.Y.: Raven Press, 1994, pp. 189–317.

  70. Wennemuth, G., Babcock, D.F., and Hille, B., Distribution and function of angiotensin II receptors in mouse spermatozoa, Andrologia, 1999, vol. 31, pp. 323–325.

    PubMed  CAS  Google Scholar 

  71. Sabeur, K., Vo, A.T., and Ball, B.O., Effects of angiotensin II on the acrosome reaction in equine spermatozoa, J. Reprod. Fertil., 2000, vol. 120, pp. 135–142.

    PubMed  CAS  Google Scholar 

  72. Ball, B.A., Gravance, C.G., Wessel, M.T., and Sabeur, K., Activity of angiotensin-converting enzyme (ACE) in reproductive tissues of the stallion and effects of angiotensin II on sperm motility, Theriogenology, 2003, vol. 59, pp. 901–914.

    PubMed  CAS  Google Scholar 

  73. Köhn, F.M., Dammshäuser, I., Neukamm, C., Renneberg, H., Siems, W.E., Schill, W.B., and Aumüller, G., Ultrastructural localization of angiotensinconverting enzyme in ejaculated human spermatozoa, Hum. Reprod., 1998, vol. 13, pp. 604–610.

    PubMed  Google Scholar 

  74. Shibahara, H., Kamata, M., Hu, J., Nakagawa, H., Obara, H., Kondoh, N., Shima, H., and Sato, I., Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa, Int. J. Androl., 2001, vol. 24, pp. 295–299.

    PubMed  CAS  Google Scholar 

  75. Costa, D.S. and Thundathil, J.C., Characterization and activity of angiotensin-converting enzyme in Holstein semen, Anim. Reprod. Sci., 2012, vol. 133, pp. 35–42.

    PubMed  CAS  Google Scholar 

  76. Xu, J., Baulding, J., and Palli, S.R., Proteomics of Tribolium castaneum seminal fluid proteins: identification of an angiotensin-converting enzyme as a key player in regulation of reproduction, J. Proteomics., 2013, vol. 78, pp. 83–93.

    PubMed  CAS  Google Scholar 

  77. Fraser, L.R., The role of small molecules in sperm capacitation, Theriogenology, 2008, vol. 70, pp. 1356–1359.

    PubMed  CAS  Google Scholar 

  78. Cornett, L.E. and Meizel, S., Stimulation of in vitro activation and the acrosome reaction of hamster spermatozoa by catecholamines, Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 4954–4958.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Way, A.L. and Killian, G.J., Capacitation and induction of the acrosome reaction in bull spermatozoa with norepinephrine, J. Androl., 2002, vol. 23, pp. 352–357.

    PubMed  CAS  Google Scholar 

  80. Way, A.L. and Killian, G.J., Sperm binding, in vitro fertilization, and in vitro embryonic development of bovine oocytes fertilized with spermatozoa incubated with norepinephrine, Anim. Reprod. Sci., 2006, vol. 96, pp. 1–9.

    PubMed  CAS  Google Scholar 

  81. Fujinoki, M., Melatonin-enhanced hyperactivation of hamster sperm, Reproduction, 2008, vol. 136, pp. 533–541.

    PubMed  CAS  Google Scholar 

  82. Fujinoki, M., Serotonin-enhanced hyperactivation of hamster sperm, Reproduction, 2011, vol. 142, pp. 255–266.

    PubMed  CAS  Google Scholar 

  83. Shpakov, A.O., Structural-functional characteristics of neuronal serotonin receptors and mo;ecular mechanisms of their functional coupling to G-proteins, Neirokhimiya, 2009, vol. 26, no. 1, pp. 5–18.

    CAS  Google Scholar 

  84. Jiménez-Trejo, F., Tapia-Rodríguez, M., Cerbón, M., Kuhn, D.M., Manjarrez-Gutiérrez, G., Mendoza-Rodríguez, C.A., and Picazo, O., Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility, Reproduction, 2012, vol. 144, pp. 677–685.

    PubMed  Google Scholar 

  85. Jiménez-Trejo, F., León-Galván, M.Á., Martínez-Méndez, L.A., Tapia-Rodríguez, M., Mendoza-Rodríguez, C.A., González-Santoyo, I., López-Wilchis, R., Vela-Hinojosa, C., Baranda-Avila, N., and Cerbón, M., Serotonin in testes of bat Myotis velifer during annual reproductive cycle: expression, localization, and content variations, J. Exp. Zool. A. Ecol. Genet. Physiol., 2013, vol. 319, pp. 249–258.

    PubMed  Google Scholar 

  86. Takuwa, Y., Okamoto, Y., Yoshioka, K., and Takuwa, N., Sphingosine-1-phosphate signaling in physiology and diseases, Biofactors, 2012, vol. 38, pp. 329–337.

    PubMed  CAS  Google Scholar 

  87. Suhaiman, L., De Blas, G.A., Obeid, L.M., Darszon, A., Mayorga, L.S., and Belmonte, S.A., Sphingosine 1-phosphate and sphingosine kinase are involved in a novel signaling pathway leading to acrosomal exocytosis, J. Biol. Chem., 2010, vol. 285, pp. 16302–16314.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Belmonte, S.A. and Suhaiman, L., Optimized protocols to analyze sphingosine-1-phosphate signal transduction pathways during acrosomal exocytosis in human sperm, Methods Mol. Biol., 2012, vol. 874, pp. 99–128.

    PubMed  CAS  Google Scholar 

  89. Zhang, B.L., Li, Y., Ding, J.H., Dong, F.L., Hou, Y.J., Jiang, B.C., Shi, F.X., and Xu, Y.X., Sphingosine 1-phosphate acts as an activator for the porcine Gpr3 of constitutively active G proteincoupled receptors, J. Zhejiang Univ. Sci. B., 2012, vol. 13, pp. 555–566.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Fukuda, N., Yomogida, K., Okabe, M., and Touhara, K., Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility, J. Cell Sci., 2004, vol. 117, pp. 5835–5845.

    PubMed  CAS  Google Scholar 

  91. Vanderhaeghen, P., Schurmans, S., Vassart, G., and Parmentier, M., Olfactory receptors are displayed on dog mature sperm cells, J. Cell. Biol., 1993, vol. 123, pp. 1441–1452.

    PubMed  CAS  Google Scholar 

  92. Vanderhaeghen, P., Schurmans, S., Vassart, G., and Parmentier, M., Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species, Genomics, 1997, vol. 39, pp. 239–246.

    PubMed  CAS  Google Scholar 

  93. Walensky, L.D., Roskams, A.J., Lefkowitz, R.J., Snyder, S.H., and Ronnett, G.V., Odorant receptors and desensitization proteins colocalize in mammalian sperm, Mol. Med., 1995, vol. 1, pp. 130–141.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Spehr, M. and Hatt, H., A potential role of odorant receptor agonists and antagonists in the treatment of infertility and contraception, Curr. Opin. Investig. Drugs, 2005, vol. 6, pp. 364–368.

    PubMed  CAS  Google Scholar 

  95. Meyer, D., Voigt, A., Widmayer, P., Borth, H., Huebner, S., Breit, A., Marschall, S., de Angelis, M.H., Boehm, U., Meyerhof, W., Gudermann, T., and Boekhoff, I., Expression of Tas1 taste receptors in mammalian spermatozoa: functional role of Tas1r1 in regulating basal Ca2+ and cAMP concentrations in spermatozoa, PLoS One, 2012, vol. 7. e32354.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Behrens, M., Meyerhof, W., Hellfritsch, C., and Hofmann, T., Sweet and umami taste: natural products, their chemosensory targets, and beyond, Angew. Chem. Int. Ed. Engl., 2011, vol. 50, pp. 2220–2242.

    PubMed  CAS  Google Scholar 

  97. Fehr, J., Meyer, D., Widmayer, P., Borth, H.C., Ackermann, F., Wilhelm, B., Gudermann, T., and Boekhoff, I., Expression of the G-protein α-subunit gustducin in mammalian spermatozoa, J. Comp. Physiol., 2007, vol. 193, pp. 21–34.

    CAS  Google Scholar 

  98. Clapp, T.R., Trubey, K.R., Vandenbeuch, A., Stone, L.M., Margolskee, R.F., Chaudhari, N., and Kinnamon, S.C., Tonic activity of Gα-gustducin regulates taste cell responsivity, FEBS Lett., 2008, vol. 582, pp. 3783–3787.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Etkovitz, N., Tirosh, Y., Chazan, R., Jaldety, Y., Daniel, L., Rubinstein, S., and Breitbart, H., Bovine sperm acrosome reaction induced by G protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation, Dev. Biol., 2009, vol. 334, pp. 447–457.

    PubMed  CAS  Google Scholar 

  100. Breitbart, H. and Etkovitz, N., Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction, Asian J. Androl., 2011, vol. 13, pp. 106–110.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Revelli, A., Ghigo, D., Moffa, F., Massobrio, M., and Tur-Kaspa, I., Guanylate cyclase activity and sperm function, Endocr. Rev., 2002, vol. 23, pp. 484–494.

    PubMed  CAS  Google Scholar 

  102. Naz, R.K. and Sellamuthu, R., Receptors in spermatozoa: are they real?, J. Androl., 2006, vol. 27, pp. 627–636.

    PubMed  CAS  Google Scholar 

  103. Xie, F., Garcia, M.A., Carlson, A.E., Schuh, S.M., Babcock, D.F., Jaiswal, B.S., Gossen, J.A., Esposito, G., van Duin, M., and Conti, M., Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization, Dev. Biol., 2006, vol. 296, pp. 353–362.

    PubMed  CAS  Google Scholar 

  104. Anderson, R.A., Feathergill, K.A., Chany, C.J., Jain, S., and Krunic, A., Nitric oxide-dependent human acrosomal loss induced by PPCM (SAMMA) and by nitric oxide donors occurs by independent pathways: basis for synthesis of an improved contraceptive microbicide, J. Androl., 2009, vol. 30, pp. 168–182.

    PubMed  CAS  Google Scholar 

  105. Miraglia, E., De Angelis, F., Gazzano, E., Hassanpour, H., Bertagna, A., Aldieri, E., Revelli, A., and Ghigo, D., Nitric oxide stimulates human sperm motility via activation of the cyclic GMP/protein kinase G signaling pathway, Reproduction, 2011, vol. 141, pp. 47–54.

    PubMed  CAS  Google Scholar 

  106. Shpakov, A.O., Derkach, K.V., and Pertseva, M.N., Hormonal system of lower eukaryots, Tsitologiya, 2003, vol. 45, no. 3, pp. 223–234.

    CAS  Google Scholar 

  107. Shpakov, A.O., Structural-functional organization of adenylyl cyclases of unicellular eukaryots, Structural-organization of adenylyl cyclases of unicellular eukaryots, Tsitologiya, 2007, vol. 49, no. 2, pp. 91–106.

    CAS  Google Scholar 

  108. Shpakov, A.O., Receptors of serpentine type and heterotrimeric G-proteins of yeast fungi: structural-functional organization and molecular mechanisms of action, Heterotrimeric proteins of yeast fungi, Zh. Evol. Biokhim. Fiziol., 2007, vol. 43, no. 1, pp. 3–23.

    PubMed  CAS  Google Scholar 

  109. Shpakov, A.O., Signal molecules of bacteria of nonpeptide nature of QS-type, Microbiol., 2009, vol. 78, no. 2, pp. 163–175.

    CAS  Google Scholar 

  110. Shpakov, A.O., Peptide autoinductors of bacteria, Microbiol., 2009, vol. 78, no. 3, pp. 291–303.

    CAS  Google Scholar 

  111. Pertseva, M.N. and Shpakov, A.O., The prokaryotic origin and evolution of eukaryotic chemosignaling systems, Neurosci. Behav. Physiol., 2009, vol. 39, pp. 793–804.

    PubMed  CAS  Google Scholar 

  112. Shpakov, A.O. and Pertseva, M.N., Systems of signaling transduction of eukaryots, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, no. 2, pp. 113–130.

    Google Scholar 

  113. Oberholzer, M., Bregy, P., Marti, G., Minca, M., Peier, M., and Seebeck, T., Trypanosomes and mammalian sperm: one of a kind?, Trends Parasitol., 2007, vol. 23, pp. 71–77.

    PubMed  Google Scholar 

  114. Derkach, K.V., Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Uspenskaya, Z.I., and Pertseva, M.N., Hormonesensensitive adenylyl cyclase system of infusorium Dileptus anser, Tsitologiya, 2002, vol. 44, no. 11, pp. 1129–1134.

    CAS  Google Scholar 

  115. Derkach, K.V., Shpakov, A.O., Kuznetsova, L.A., Irlina, I.S., Plesneva, S.A., and Pertseva, M.M., Regulation of adenylyl cyclase system of infusorium Tetrahymena pyriformis by hormonal and nonhormonal agents and nonhormonal agents and its dependence on level of basal activity of adenylyl cyclase, Zh. Evol. Biokhim. Fiziol., 2003, vol. 39, no. 4, pp. 332–338.

    PubMed  CAS  Google Scholar 

  116. Shpakov, A.O., Derkach, K.V., Uspenskaya, Z.I., Shpakova, E.A., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Molecular mechanisms of regulator action of adreneractivity of adenylyl cyclase signaling system of infusoria Dileptus anser and Tetrahymena pyriformis, Tsitologiya, 2004, vol. 46, no. 4, pp. 317–325.

    CAS  Google Scholar 

  117. Shpakov, A.O., Derkach, K.V., Uspenskaya, Z.I., and Pertseva, M.N., Stimulation of adenylyl cyclase by cyclic adenosine monophosphate in cellular culture of infusorian Dileptus anser, Dokl. Akad. Nauk, 2009, vol. 424, no. 2, pp. 270–272.

    Google Scholar 

  118. Derkach, K.V., Shpakov, A.O., Uspenskaya, Z.I., and Yudin, A.L., Functional characteristics of calcium-sensitive adenylyl cyclase of infusorian Tetrahymena pyriformis, Tsitologiya, 2010, vol. 52, no. 11, pp. 967–976.

    CAS  Google Scholar 

  119. Shpakov, A.O., Derkach, K.V., and Uspenskaya, Z.I., Effect of natural amino acid and sugars on activity of cyclases of infusoria Tetrahymena pyriformis and Dileptus anser, Zh. Evol. Biokhim. Fiziol., 2011, vol. 47, no. 2, pp. 128–135.

    PubMed  CAS  Google Scholar 

  120. Zhu, L. and Inaba, K., Lipid rafts function in Ca2+ signaling responsible for activation of sperm motility and chemotaxis in the ascidian Ciona intestinalis, Mol. Reprod. Dev., 2011, vol. 78, pp. 920–929.

    PubMed  CAS  Google Scholar 

  121. Bookbinder, L.H., Moy, G.W., and Vacquier, V.D., Identification of sea urchin sperm adenylate cyclase, J. Cell. Biol., 1990, vol. 111, pp. 1859–1866.

    PubMed  CAS  Google Scholar 

  122. Beltrán, C., Vacquier, V.D., Moy, G., Chen, Y., Buck, J., Levin, L.R., and Darszon, A., Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction, Biochem. Biophys. Res. Commun., 2007, vol. 358, pp. 1128–1135.

    PubMed  PubMed Central  Google Scholar 

  123. Tubbs, C. and Thomas, P., Progestin signaling through an olfactory G protein and membrane progestin receptor-α in Atlantic croaker sperm: potential role in induction of sperm hypermotility, Endocrinology, 2009, vol. 150, pp. 473–484.

    PubMed  CAS  Google Scholar 

  124. O’Brien, E.D., Krapf, D., Cabada, M.O., Visconti, P.E., and Arranz, S.E., Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation, Dev. Biol., 2011, vol. 350, pp. 80–88.

    PubMed  PubMed Central  Google Scholar 

  125. Baldi, E., Krausz, C., and Forti, G., Nongenomic actions of progesterone on human spermatozoa, Trends Endocrinol. Metab., 1995, vol. 6, pp. 198–205.

    PubMed  CAS  Google Scholar 

  126. Teves, M.E., Guidobaldi, H.A., Uñates, D.R., Sanchez, R., Miska, W., Publicover, S.J., Morales Garcia, A.A., and Giojalas, L.C., Molecular mechanism for human sperm chemotaxis mediated by progesterone, PLoS One, 2009, vol. 4, pp. e8211.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © A.O. Shpakov, K.V. Derkach, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 4, pp. 255–268.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakov, A.O., Derkach, K.V. Functional role of membrane-bound adenylyl cyclases and coupled to them receptors and G-proteins in regulation of fertility of spermatozoa. J Evol Biochem Phys 50, 286–302 (2014). https://doi.org/10.1134/S0022093014040024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014040024

Key words

Navigation