Skip to main content
Log in

BENDING DEFORMATION OF FERROGEL UNDER THE ACTION OF A MAGNETIC FIELD

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper proposes a model of static transverse elastic deformations of a magnetic gel sample shaped as a strongly elongated cylinder, which is under the action of a transverse uniform magnetic field and the force of gravity. Theoretical results obtained within the framework of the proposed model are in qualitative agreement with the results of laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. T. Lopez-Lopez, J. D. G. Duran, L. Yu. Iskakova, and A. Yu. Zubarev, “Mechanics of Magnetopolymer Composites: A Review," J. Nanofluids 5 (4), 479–495 (2016).

    Article  Google Scholar 

  2. R. Weeber, M. Hermes, A. M. Schmidt, and C. Holm, “Polymer Architecture of Magnetic Gels: A Review," J. Phys.: Condens. Matter. 30, 063002 (2018).

    ADS  Google Scholar 

  3. R. Messing, N. Frickel, L. Belkoura, et al., “Cobalt Ferrite Nanoparticles as Multifunctional Cross-Linkers in PAAm Ferrohydrogels," Macromolecules 44, 2990–2999 (2011).

    Article  ADS  Google Scholar 

  4. P. Ilg, “Stimuli-Responsive Hydrogels Cross-Linked by Magnetic Nanoparticles," Soft Matter. 9, 3465–3468 (2013).

    Article  ADS  Google Scholar 

  5. A. B. Bonhome-Espinosa, F. Campos, I. A. Rodriguez, et al., “Effect of Particle Concentration on the Microstructural and Macromechanical Properties of Biocompatible Magnetic Hydrogels," Soft Matter. 13, 2928–2941 (2017).

    Article  ADS  Google Scholar 

  6. M. T. Lopez-Lopez, G. Scionti, A. C. Oliveira, et al., “Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials," PLoS ONE 10 (7), e0133878 (2015).

    Article  Google Scholar 

  7. J. Wu, X. Gong, Y. Fan, and H. Xia, “Physically Crosslinked Poly (Vinyl Alcohol) Hydrogels with Magnetic Field Controlled Modulus," Soft Matter. 7, 6205–6212 (2011).

    Article  ADS  Google Scholar 

  8. R. V. Ramanujan and L. L. Lao, “The Mechanical Behavior of Smart Magnet–Hydrogel Composites," Smart Mater. Struct. 15, 952–956 (2006).

    Article  Google Scholar 

  9. X. Zhao, J. Kim, C. A. Cezar, et al., “Active Scaffolds for On-Demand Drug and Cell Delivery," Proc. Nat. Acad. Sci. 108, 67–72 (2011).

    Article  ADS  Google Scholar 

  10. Injectable Hydrogels for Regenerative Engineering, Ed. by L. S. Nair (Imperial College Press, London, 2016).

    Book  Google Scholar 

  11. T. Mitsumata, A. Honda, H. Kanazawa, and M. Kawai, “Magnetically Tunable Elasticity for Magnetic Hydrogels Consisting of Carrageenan and Carbonyl Iron Particles," J. Phys. Chem. B 116, 12341–12348 (2012).

    Article  Google Scholar 

  12. W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, “Small-Scale Soft-Bodied Robot with Multimodal Locomotion," Nature 554, 81–85 (2018).

    Article  ADS  Google Scholar 

  13. K. Zimmermann, V. A. Naletova, I. Zeidis, et al., “A Deformable Magnetizable Worm in a Magnetic Field—A Prototype of a Mobile Crawling Robot," J. Magnet. Magnet. Mater. 311 (1), 450–453 (2007).

    Article  ADS  Google Scholar 

  14. S. A. Kalmykov, V. A. Naletova, and V. A. Turkov, “Motion of a Slender Body Made of Magnetizable Composite in a Traveling Magnetic Field," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 6–16 (2013) [Fluid Dyn. 48, 4–13 (2013); DOI: https://doi.org/10.1134/S001546281301002X].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Cebers, “Flexible Magnetic Swimmer," Magnetohydrodynamics 41 (1), 63–72 (2005).

    Article  ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Fizmatlit, Moscow, 2003; Pergamon Press, 1975).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, New York, 1984)).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Chirikov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 2, pp. 193-200. https://doi.org/10.15372/PMTF20230218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirikov, D.N. BENDING DEFORMATION OF FERROGEL UNDER THE ACTION OF A MAGNETIC FIELD. J Appl Mech Tech Phy 64, 342–348 (2023). https://doi.org/10.1134/S0021894423020189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423020189

Keywords

Navigation