Skip to main content
Log in

CRACKS IN HYBRID FIBER METAL LAMINATED NANOCOMPOSITES UNDER UNIAXIAL TENSION

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Technology for producing hybrid nanocomposite materials with a 7075-T6 aluminum matrix and a filler in the form of nanoparticles is proposed. A review of experimental data and computer and theoretical models of crack initiation is presented. The mechanisms of microcrack initiation under uniaxial tensile load are determined. To study the fracture of loaded nanocrystalline materials and determine their mechanisms, a model is proposed that describes the formation and growth of nanocracks near the tips of elliptical cracks in a hybrid nanocomposite material. The dependences between the applied force and the crack length are obtained using the parameters of a modeled crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. Wolf, V. Yamakov, S. R. Phillpot, et al., “Deformation of Nanocrystalline Materials by Molecular-Dynamics Simulation: Relationship to Experiments," Acta Mater. 53 (1), 1–40 (2005).

    Article  ADS  Google Scholar 

  2. K. A. Padmanabhan and H. Gleiter, “Optimal Structural Superplasticity in Metals and Ceramics of Microcrystalline- and Nanocrystalline-Grain Sizes," Mater. Sci. Eng. A 381 (1), 28–38 (2004).

    Article  Google Scholar 

  3. K. S. Kumar, S. Suresh, M. F. Chisholm, et al., “Deformation of Electrodeposited Nanocrystalline Nickel," Acta Mater. 51 (2), 387–405 (2003).

    Article  ADS  Google Scholar 

  4. I. Hasanov, I. Abbasov, and N. Gurbanov, “‘Stress-Deformed State of a Packing Ring with Eccentric Holes," Proc. Latvian Acad. Sci. Sec. B 74 (4), 287–292 (2020).

  5. T. G. Jabbarov, O. A. Dyshin, M. B. Babanli, et al., “Mathematical Modeling of the Sintering Process of Iron-Based Metal–Glass Materials," Progr. Phys. Met. 20 (4), 584 (2019).

    Article  Google Scholar 

  6. N. A. Gurbanov and M. B. Babanli, “Investigation of Effects of Graphene Nanoplatelets Addition on Mechanical Properties of 7075-T6 Aluminium Matrix Hybrid Fibre Metal Laminates," Metallophys. Adv. Technol. 43 (12), 1589–1599 (2021).

    Google Scholar 

  7. D. Farkas, S. Petegem, P. M. Derlet, and Van H. Swygenhoven, “Dislocation Activity and Nano-Void Formation near Crack Tips in Nanocrystalline Ni," Acta Mater. 53 (11), 3115–3123 (2005).

    Article  ADS  Google Scholar 

  8. M. J. Demkowicz, A. S. Argon, D. Farkas, and M. Frary, “Simulation of Plasticity in Nanocrystalline Silicon," Philos. Mag. 87, 4253–4271 (2007).

    Article  ADS  Google Scholar 

  9. A. Afrouzian, H. M. Aleni, G. Liaghat, and H. Ahmad, “Effect of Nano-Particles on the Tension, Flexural and Perforation Properties of the Glass/Epoxy Composites," J. Reinforc. Plast. Compos. 36 (12), 900–916 (2017).

    Article  Google Scholar 

  10. D. M. Hulbert, D.Jiang D., J. D. Kuntz, et al., “A Low-Temperature High-Strain-Rate Formable Nanocrystalline Superplastic Ceramic," Scripta Mater. 56 (12), 1103–1106 (2007).

    Article  Google Scholar 

  11. I. A. Ovid’ko and A. G. Sheinerman, “Nanocrack Generation at Dislocation–Disclination Configurations in Nanocrystalline Metals and Ceramics," Phys. Rev. B 77, 54109 (2008)

    Article  ADS  Google Scholar 

  12. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff, Dordrecht, 1987).

    Book  MATH  Google Scholar 

  13. S. V. Bobylev, A. K. Mukherjee, I. A. Ovid’ko, et al., “Effects of Intergrain Sliding on Crack Growth in Nanocrystalline Materials," Int. J. Plasticity 26 (11), 1629–1644 (2010).

    Article  MATH  Google Scholar 

  14. L. L. Fischer and G. E. Beltz, “The Effect of Crack Blunting on the Competition between Dislocation Initiation and Cleavage," J. Mech. Phys. Solids 49, 635–654 (2001).

    Article  ADS  MATH  Google Scholar 

  15. G. E. Beltz, D. M. Lipkin, and L. L. Fischer, “Role of Crack Blunting in Ductile versus Brittle Response of Crystalline Materials," Phys. Rev. Lett. 82, 44–68 (1999).

    Article  Google Scholar 

  16. I. A. Ovid’ko and A. G. Sheinerman, “Ductile vs. Brittle Behavior of Pre-Cracked Nanocrystalline and Ultrafine-Grained Materials," Acta Mater. 58 (16), 5286–5294 (2010).

    Article  ADS  Google Scholar 

  17. D. Farkas and W. A. Curtin, “Plastic Deformation Mechanisms in Nanocrystalline Columnar Grain Structures," Mater. Sci. Eng. A 412 (1), 316–322 (2005).

    Article  Google Scholar 

  18. I. A. Ovid’ko and A. G. Sheinerman, “Grain Boundary Sliding and Nanocrack Generation near Crack Tips in Nanocrystalline Metals and Ceramics," Mater. Phys. Mech. 10, 37–46 (2010).

    Google Scholar 

  19. V. M. Mirsalimov, “Optimal Design of a Composite Reinforced by Unidirectional Fibers," Prikl. Mekh. Tekh. Fiz. 61 (3), 153–170 (2020) [J. Appl. Mech. Tech. Phys. 61 (3), 447–462 (2020); https://doi.org/10.1134/S0021894420030177].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. M. Mirsalimov, “Contact Problem of a Periodic System of Variable Width Slits with Partially Interacting Edges in the Presence of End Zones of Plastic Deformations," Prikl. Mekh. Tekh. Fiz. 60 (1), 114–123 (2019) [J. Appl. Mech. Tech. Phys. 60 (1), 97–105 (2019); https://doi.org/10.1134/S0021894419010139].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aslanov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Vol. 63, No. 5, pp. 168-177. https://doi.org/10.15372/PMTF20220517.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babanli, M., Mekhtiyev, R., Gurbanov, N. et al. CRACKS IN HYBRID FIBER METAL LAMINATED NANOCOMPOSITES UNDER UNIAXIAL TENSION. J Appl Mech Tech Phy 63, 876–883 (2022). https://doi.org/10.1134/S0021894422050170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422050170

Keywords

Navigation