Skip to main content
Log in

LOCAL EQUILIBRIUM APPROXIMATION IN THE MATHEMATICAL MODEL OF THE FAR TURBULENT WAKE BEHIND A BODY OF REVOLUTION

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The flow in the far turbulent wake behind a body of revolution is studied with the use of a three-parameter turbulence model, which includes differential equations of the turbulent energy balance, transfer equation for the turbulent energy dissipation rate, and turbulent shear stress equation. Local equilibrium algebraic truncation of the transfer equation for the turbulent shear stress yields the known Kolmogorov–Prandtl relation. Under a certain restriction on the values of the empirical constants and for the law of time scale growth consistent with the mathematical model, this relation is a differential constraint of the model or an invariant manifold in the phase space of the corresponding dynamic system. The equivalence of the local equilibrium approximation and the condition of the zero value of Poisson’s bracket for the normalized turbulent diffusion coefficient and defect of the averaged streamwise component of velocity is demonstrated. Results of numerical experiments are reported; they are found to be in good agreement with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. A. S. Ginevskii, Theory of Turbulent Jets and Wakes (Mashinostroenie, Moscow, 1969) [in Russian].

    Google Scholar 

  2. W. Rodi, “The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation Model of Turbulence," Ph.D. Dissertation (London, 1972).

  3. V. I. Bukreev, O. F. Vasil’ev, and Yu. M. Lytkin, “Influences of the Shape of a Body on the Characteristics of a Selfsimilar Axisymmetric Wake," Dokl. Akad. Nauk SSSR 207 (4), 804–807 (1972) [Soviet Phys. Dokl. 17, 1144–1147 (1973)].

    Google Scholar 

  4. G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, et al., Theory of Turbulent Jets (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  5. N. N. Fedorova and G. G. Chernykh, “On Numerical Modeling of Axisymmetric Turbulent Wakes," Model. Mekh. (collected scientific papers) 6 (3), 141–159 (1992).

    Google Scholar 

  6. V. E. Kozlov, “Self-Similar Solutions for an Axisymmetric Turbulent Wake," Prikl. Mekh. Tekh. Fiz. 36 (5), 16–20 (1995) [J. Appl. Mech. Tech. Phys. 36 (5), 654–657 (1995)].

    Article  ADS  Google Scholar 

  7. J. Piquet, Turbulent Flows. Models and Physics (Springer-Verlaf, Berlin–Heidelberg, 1999).

    Book  MATH  Google Scholar 

  8. O. V. Kaptsov, I. A. Efremov, and A. V. Shmidt, “Self-Similar Solutions of the Second-Order Model of the Far Turbulent Wake," Prikl. Mekh. Tekh. Fiz. 49 (2), 74–78 (2008) [J. Appl. Mech. Tech. Phys. 49 (2), 217–221 (2008)].

    Article  ADS  MATH  Google Scholar 

  9. J. A. Redford, I. P. Castro, and G. N. Coleman, “On the Universality of Turbulent Axisymmetric Wakes," J. Fluid Mech. 710, 419–452 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. G. Demenkov, O. A. Druzhinin, and G. G. Chernykh, “Numerical Models of a Far Turbulent Wake of an Elongated Body of Revolution," Teplofiz. Aeromekh. 23 (6), 967–970 (2016) [Thermophys. Aeromech. 23 (6), 929–932 (2016)].

    Article  ADS  Google Scholar 

  11. W. Rodi, Turbulence Models and Their Application in Hydraulics. A State of the Art Review (Univ. of Karlsruhe, Karlsruhe, 1980).

    Google Scholar 

  12. A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, The Method of Differential Constraints and Its Applications in Gas Dynamics (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  13. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics (Nauka, Novosibirsk, 1994; Springer, Netherlands, 1998).

    MATH  Google Scholar 

  14. V. N. Grebenev, A. G. Demenkov, and G. G. Chernykh, “Analysis of the Local-Equilibrium Approximation in the Problem of Far Planar Turbulent Wake," Dokl. Akad. Nauk 385 (1), 57–60 (2002) [Dokl. Phys. 47 (7), 518–521 (2002)].

    Article  ADS  MathSciNet  Google Scholar 

  15. V. N. Grebenev, A. G. Demenkov, G. G. Chernykh, and A. N. Grichkov, “Local Equilibrium Approximation in Free Turbulent Flows: Verification through the Method of Differential Constrains," Z. Angew. Math. Mech. 117 (9), e202000095 (2021).

    MathSciNet  Google Scholar 

  16. V. N. Grebenev, A. G. Demenkov, and G. G. Chernykh, “Method of Differential Constraints: Local Equilibrium Approximation in a Planar Momentumless Turbulent Wake," Prikl. Mekh. Tekh. Fiz. 62 (3), 38–47 (2021) [J. Appl. Mech. Tech. Phys. 62 (3), 383–390 (2021)].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. K. Hanjalic and B. E. Launder, “A Reynolds Stress Model of Turbulence and its Application to thin Shear Flows," J. Fluid Mech. 52, 609–638 (1972).

    Article  ADS  MATH  Google Scholar 

  18. W. Lewellen, Handbook of Turbulence, Vol. 1: Fundamental and Applications (Plenum, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Chernykh.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Vol. 63, No. 5, pp. 110-118. https://doi.org/10.15372/PMTF20220511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, V.N., Demenkov, A.G. & Chernykh, G.G. LOCAL EQUILIBRIUM APPROXIMATION IN THE MATHEMATICAL MODEL OF THE FAR TURBULENT WAKE BEHIND A BODY OF REVOLUTION. J Appl Mech Tech Phy 63, 825–832 (2022). https://doi.org/10.1134/S002189442205011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442205011X

Keywords

Navigation