Skip to main content
Log in

Verification of Wide-Range Constitutive Relations for Elastic-Viscoplastic Materials Using the Taylor–Hopkinson Test

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A mathematical model of a solid body with mesoscopic defects is presented and validated. The constitutive relations proposed earlier allow describing the deformation behavior of typical elastic-viscoplastic materials (metals and alloys) in a wide range of strain rates, temperatures, and stresses. Methods for identifying unknown parameters of the model by solving a number of independent optimization problems using data from independent experiments are developed and implemented. For identification we use both the results of a literature review and experimental data. The experimental study on high-speed collision of a cylindrical specimen with an obstacle in the form of a bar (Taylor–Hopkinson test) is carried out by recording the temperature field in the course of deformation. The data are used to verify the model. For comparison the calculations are performed in the three-dimensional statement and in the axisymmetric statement. The formulated boundary value problems are solved numerically by the finite element method. The results of numerical calculations are in good agreement with the experimental data: the shape of the specimen after collision and the measured temperature (mechanical energy dissipation during inelastic deformation) coincide. This confirms the adequacy of the developed mathematical model and indicates that it can be used to solve both fundamental and applied problems of solid mechanics. The analysis of parallelism efficiency shows that the use of eight cores yields a five-fold acceleration and, as the number of cores increases further, this trend presumably continues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Taylor, G.I., The use of flat-ended projectiles for determining dynamic yield stress, Proc. R. Soc. London, Ser. A, 1948, vol. 3, pp. 289–301. https://doi.org/10.1098/rspa.1948.0081

    Article  ADS  Google Scholar 

  2. Bragov, A.M., Konstantinov, A.Yu., and Lomunov, A.K., Eksperimental’no-teoreticheskoe issledovanie protsessov vysokoskorostnogo deformirovaniya i razrusheniya materialov razlichnoy fizicheskoi prirody s ispol’zovaniem metoda Kol’skogo i ego modifikatsii (Experimental and Theoretical Study of the Processes of High-Speed Deformation and Fracture of Materials of Various Physical Nature Using the Kolsky Method and Its Modifications), Nizh. Novgorod: NNGU im. N.I. Lobachevskogo, 2018.

  3. Sen, S., Banerjee, B., and Shaw, A., Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate, Int. J. Solid Struct., 2020, vol. 193–194, pp. 357–374. https://doi.org/10.1016/j.ijsolstr.2020.02.020

    Article  Google Scholar 

  4. Bogomolov, A.I., Gorel’skii, V.A., Zelepugin, S.A., and Khorev, I.E., Behavior of bodies of revolution in dynamic contact with a rigid wall, J. Appl. Mech. Tech. Phys., 1986, vol. 27, pp. 149–152. https://doi.org/10.1007/BF00911139

    Article  ADS  Google Scholar 

  5. Chandola, N., Revil-Baudard, B., and Cazacu, O., Plastic deformation of high-purity α-titanium: Model development and validation using the Taylor cylinder impact test, J. Phys.: Conf. Ser., 2016, vol. 734, p. 032048. https://doi.org/10.1088/1742-6596/734/3/032048

    Article  Google Scholar 

  6. Holt, W.H., Mock, W., Zerilli, F.J., and Clark, J.B., Experimental and computational study of the impact deformation of titanium Taylor cylinder specimens, Mech. Mater., 1994, vol. 17, pp. 195–201. https://doi.org/10.1016/0167-6636(94)90059-0

    Article  Google Scholar 

  7. Rakvag, K.G., Borvik, T., and Hopperstad, O.S., A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests, Int. J. Solid Struct., 2014, vol. 51, pp. 808–821. https://doi.org/10.1016/j.ijsolstr.2013.11.008

    Article  Google Scholar 

  8. Borodin, E.N. and Mayer, A.E., Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests, Int. J. Plast., 2015, vol. 74, pp. 141–157. https://doi.org/10.1016/j.ijplas.2015.06.006

    Article  Google Scholar 

  9. Bartkowski, P., Keele, M., and Bruchey, W., in Proceedings of the 19th International Symposium of Ballistics, Interlaken, Switzerland, May 7–11, 2001, vol. 3, pp. 1577–1584.

  10. Mocko, W., Janiszewski, J., Radziejewska, J., and Grazka, M., Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions, Int. J. Impact Eng., 2015, vol. 75, pp. 203–213. https://doi.org/10.1016/j.ijimpeng.2014.08.015

    Article  Google Scholar 

  11. Wei, G., Zhang, W., Huang, W., Ye, N., Gao, Y., and Ni, Y., Effect of strength and ductility on deformation and fracture of three kinds of aluminum alloys during Taylor tests, Int. J. Impact Eng., 2014, vol. 73, pp. 75–90. https://doi.org/10.1016/j.ijimpeng.2014.06.011

    Article  Google Scholar 

  12. Belov, G.V., Gusarov, A.P., Markov, V.A., Pusev, V.A., Ovchinnikov, A.F., Selivanov, V.V., and Sotskiy, M.Yu., Application of the Taylor test to research dynamic mechanical properties of highly porous aluminum alloy, Nauka Obrazov., 2012, no. 9, pp. 13–28. https://doi.org/10.7463/0912.0442058

  13. Kleiser, G., Revil-Baudard, B., and Pasiliao, C., High strain-rate plastic deformation of molybdenum: Experimental investigation, constitutive modeling and validation using impact tests, Int. J. Impact Eng., 2016, vol. 96, pp. 116–128. https://doi.org/10.1016/j.ijimpeng.2016.05.019

    Article  Google Scholar 

  14. Zerilli, F.J. and Armstrong, R.W., Dislocation-mechanics based constitutive relations for material dynamics calculations, J. Appl. Phys., 1987, vol. 61, pp. 1816–1825. https://doi.org/10.1063/1.338024

    Article  ADS  Google Scholar 

  15. Maudlin, P.J., Bingert, J.F., House, J.W., and Chen, S.R., On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Experiments and simulations, Int. J. Plast., 1999, vol. 15, pp. 139–166. https://doi.org/10.1016/S0749-6419(98)00058-8

    Article  MATH  Google Scholar 

  16. Efremov, D.V., Uvarov, S.V., Spivak, L.V., and Naimark, O.B., Statistical patterns of deformation localization during plastic flow in the AMg6 alloy, Pis’ma Mater., 2020, vol. 10, no. 1 (37), pp. 38–42. https://doi.org/10.22226/2410-3535-2020-1-38-42

  17. Naimark, O.B., Collective properties of defects ensembles and some nonlinear problems of plasticity and fracture, Phys. Mesomech., 2003, vol. 6, no. 4, pp. 39–63.

    Google Scholar 

  18. Bayandin, Yu., Leont’ev, V., Naimark, O., and Permjakov, S., Experimental and theoretical study of universality of plastic wave fronts and structural scaling in shock loaded copper, J. Phys. IV (France), 2006, vol. 134, pp. 1015–1021. https://doi.org/10.1051/jp4:2006134155

    Article  Google Scholar 

  19. Bayandin, Yu.V., Saveleva, N.V., Savinykh, A.S., and Naimark, O.B., Numerical simulation of multiscale damage-failure transition and shock wave propagation in metals and ceramics, J. Phys.: Conf. Ser., 2014, vol. 500, p. 152001. https://doi.org/10.1088/1742-6596/500/15/152001

    Article  Google Scholar 

  20. Saveleva, N., Bayandin, Yu., and Naimark, O., Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading, AIP Conf. Proc., 2015, vol. 1683, p. 020201. https://doi.org/10.1063/1.4932891

    Article  Google Scholar 

  21. Saveleva, N.V., Bayandin, Y.V., Savinykh, A.S., Garkushin, G.V., Lyapunova, E.A., Razorenov, S.V., and Naimark, O.B., Peculiarities of the elastic-plastic transition and failure in polycrystalline vanadium under shock-wave loading conditions, Tech. Phys. Lett., 2015, vol. 41, pp. 579–582. https://doi.org/10.1134/S1063785015060292

    Article  ADS  Google Scholar 

  22. Bilalov, D.A., Bayandin, Yu.V., and Naimark, O.B., Mathematical modeling of failure process of AlMg2.5 alloy in high and very high cycle fatigue, J. Appl. Mech. Tech. Phys., 2019, vol. 60, pp. 1209–1219. https://doi.org/10.1134/S0021894419070022

    Article  ADS  Google Scholar 

  23. Kostina, A.A., Bayandin, Yu.V., and Plekhov, O.A., Model of energy accumulation and dissipation in plastically deformed metals, Fiz. Mezomekh., 2014, vol. 17, no. 1, pp. 43–49.

    Google Scholar 

  24. Annin, B.D. and Korobeynikov, S.N., Admissible forms of elastic deformation laws in the determining elastic-plasticity relations, Sib. Zh. Ind. Mat., 1998, vol. 1, no. 1, pp. 21–34.

    MathSciNet  Google Scholar 

  25. Novokshanov, R.S. and Rogovoy, A.A., On the construction of evolutionary constitutive equations, Vestn. PNIPU, Mat. Model. Sist. Protsess., 2001, no. 9, pp. 103–109.

  26. Glushak, B.L., Ignatova, O.N., Pushkov, V.A., Novikov, S.A., Girin, A.S., and Sinitsyn, V.A., Dynamic deformation of aluminum alloy AMg-6 at normal and higher temperatures. J. Appl. Mech. Tech. Phys., 2000, vol. 41, pp. 1083–1086. https://doi.org/10.1023/A:1026662824249

    Article  ADS  Google Scholar 

  27. Mashinostroenie, Entsiklopediya, Tom II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy (Mechanical Engineering, Encyclopedia, Vol. II-3: Non-Ferrous Metals and Alloys. Composite Metallic Materials), Fridlyander, I.N., Ed., Moscow, Mashinostroenie, 2001.

Download references

Funding

The work is supported by the State Task of the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A19-119013090021-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Bayandin, D. R. Ledon or S. V. Uvarov.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayandin, Y.V., Ledon, D.R. & Uvarov, S.V. Verification of Wide-Range Constitutive Relations for Elastic-Viscoplastic Materials Using the Taylor–Hopkinson Test. J Appl Mech Tech Phy 62, 1267–1276 (2021). https://doi.org/10.1134/S0021894421070026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421070026

Keywords:

Navigation