Skip to main content
Log in

AZIMUTAL WAVES IN A ROTATING VISCOUS FLOTATION FLUID

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Azimuthal gyroscopic waves in a floatation fluid forming a centrifuged layer on the solid wall of a cylindrical cavity of the rotor are studied. The exact solution of the linearized hydrodynamic problem with a nonclassical boundary condition on the free surface is obtained. The dispersion equation is derived. The influence of the inertial surface of the fluid on the stability of quasi-solid-body rotation of the centrifuged layer is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. N. V. Derendyaev, A. V. Vostroukhov, and I. N. Soldatov, “Stability and Andronov–Hopf Bifurcation of Steady-State Motion of Rotor System Partly Filled with Liquid: Continuous and Discrete Models," Trans. ASME. J. Appl. Mech. 73 (4), 580–589 (2006).

    Article  ADS  Google Scholar 

  2. N. V. Derendyaev, Rotational Stability of Rotor Systems Containing a Fluid (Izd. Nizhegor. Univ., Nizhny Novgorod, 2014) [in Russian].

  3. V. I. Erofeev and I. N. Soldatov, “Acoustic Waves in a Rotating Ideal Gas," Akust. Zhurn. 46 (5), 642–647 (2000) [Acoustical Physics 46 (5), 563–568 (2000).

    Article  ADS  Google Scholar 

  4. S. V. Bogovalov, V. A. Kislov, and I. V. Tronin, “Waves in Strong Centrifugal Fields: Dissipative Gas," Theoret. Comput. Fluid Dynamics. 33 (1), 21–35 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. P. Greenspan, The Theory of Rotating Fluids(Cambridge University Press, Cambridge, 1968)

    MATH  Google Scholar 

  6. N. D. Kopachevskii, S. G. Krein,and Ngo Zui Kan, Operator Methods in Linear Hydrodynamics: Evolutionary and Spectral Problems (Nauka, Moscow, 1989) [in Russian].

  7. I. N. Soldatov, “Gyroscopic Waves in a Rotating Liquid Layer," Prikl. Mekh. Tekh. Fiz. 49 (2), 15–20 (2008) [J. Appl. Mech. Tekh, Fiz. 49 (2), 167–171 (2008); https://doi.org/10.1007/s10808-008-0024-4].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. J. Kobine, “Inertial Wave Dynamics in a Rotating and Precessing Cylinder," J. Fluid Mech. 303, 233–252 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Manasseh, “Nonlinear Behaviour of Contained Inertia Waves," J. Fluid Mech. 315, 151–173 (1996).

    Article  ADS  Google Scholar 

  10. A. E. Hosoi and L. Mahadevan, “Axial Instability of a Free-Surface Front in a Partially Filled Horizontal Rotating Cylinder," Phys. Fluids 315 (1), 97–106 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Ashmore, A. E. Hosoi, and H. A. Stone, “The Effect of Surface Tension on Rimming Flows in a Partially Filled Rotating Cylinder," J. Fluid Mech. 479, 65–98 (2003).

    Article  ADS  Google Scholar 

  12. G. Coppola and O. Semeraro, “Interfacial Instability of Two Rotating Viscous Immiscible Fluids in a Cylinder," Phys. Fluids23, 064105 (2011).

    Article  ADS  Google Scholar 

  13. N. V. Kozlov, A. N. Kozlova, and D. A. Shuvalova, “Dynamics of Immiscible Liquids in a Rotating Horizontal Cylinder," Phys. Fluids. 28, 112102 (2016).

    Article  ADS  Google Scholar 

  14. Wen Yang, I. Delbende, Y. Fraigneau, and L. M. Witkowski, “Axisymmetric Rotating Flow with Free Surface in a Cylindrical Tank," J. Fluid Mech. 861, 796–814 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. N. Soldatov and N. V. Klyueva, “Waves in a Centrifuged Layer of a Rotating Viscous Fluid with an Inertial Surface," Mat. Model.31 (6), 3–17 (2019).

    MathSciNet  MATH  Google Scholar 

  16. A. S. Peters, “The Effect of a Floating Mat on Water Waves," Comm. Pure Appl. Math. 3 (4), 319–354 (1950).

    Article  MathSciNet  Google Scholar 

  17. B. N. Mandal, “Water Waves Generated by Perturbation at an Inertial Surface," Appl. Sci. Res. 5 (1), 67–73 (1988).

    Article  Google Scholar 

  18. H. Dhillon and B. N. Mandal, “Cauchy–Poisson Problem for a Two-Layer Fluid with an Inertial Surface," J. Marine Sci. Appl.12, 21–30 (2013).

    Article  ADS  Google Scholar 

  19. S. A. Gabov, “On the Existence of Steady-State Waves of Finite Amplitude on the Surface of a Floatation Fluid," Zhurn. Vychisl. Mat. Mat. Fiz., No. 10, 1507–1519 (1988).

    Google Scholar 

  20. S. A. Gabov and A. G. Sveshnikov, “Mathematical Problems of the Dynamics of a Floatation Fluid," Itogi Nauki i Tekhniki. Ser. Mat. Analiz 28, 3–86 (1990).

    Google Scholar 

  21. S. A. Gabov and M. B. Tverskoi, “Calculation of the Parameters of Steady-State Waves of Finite Amplitude on the Surface of a Floatation Fluid," Mat. Model. 1 (2), 109–118 (1989).

    MathSciNet  Google Scholar 

  22. B. V. Loginov and S. A. Karpova, “Calculation of Periodic Solutions of the Problem of Capillary-Gravitational Waves in the Spatial Layer of a Floatation Fluid," Vestn. Sam. Gos. Univ., No. 3, 69–80 (1997).

    Google Scholar 

  23. O. M. Philips, “Centrifugal Waves," J. Fluid Mech.7 (3), 340–352 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  24. Sun Tsao, “Waves on the Surface of a Fluid Acted on by a Centrifugal Force," Prikl. Mekh. Tekh. Fiz., No. 3, 90–96 (1960).

    Google Scholar 

  25. A. A. Abrashkin, “Nonlinear Azimuthal Waves in a Centrifuge," Prikl. Mekh. Tekh. Fiz., No. 3, 86–89 (1984) [J. Appl. Mech. Tekh, Fiz. 25 (3), 411–415 (1984); https://doi.org/10.1007/BF00910404].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Soldatov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 2, pp. 110–121.https://doi.org/10.15372/PMTF20210211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, I.N., Klyueva, N.V. AZIMUTAL WAVES IN A ROTATING VISCOUS FLOTATION FLUID. J Appl Mech Tech Phy 62, 273–282 (2021). https://doi.org/10.1134/S0021894421020115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421020115

Keywords

Navigation