Skip to main content
Log in

Stokes Flow Through a Membrane Built up by Nonhomogeneous Porous Cylindrical Particles

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This work deals with the creeping flow of an incompressible viscous fluid through a membrane. It is assumed that the membrane is composed of nonhomogeneous porous cylindrical particles with radially varying permeability enclosing a cavity. The flow within the nonhomogeneous porous medium is governed by the Darcy equation. The flow inside the cavity and outside the nonhomogeneous porous region is governed by the Stokes equations. An analytical solution of the problem is obtained by using the cell model technique. Exact expressions for the drag force acting on the membrane and hydrodynamic permeability of the membrane are derived. The influence of radially varying permeability on flow parameters is considered. The effects of various parameters of the problem on hydrodynamic permeability of the membrane are discussed for four models. Some previous results for hydrodynamic permeability are verified as special limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Happel, “Viscous Flow Relative to Array of Cylinders,” AIChE J. 5(2), 174–177 (1959).

    Article  Google Scholar 

  2. S. Kuwabara, “The Force Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Number,” J. Phys. Soc. Jpn. 14, 527–532 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. G. Kvashnin, “Cell Model of Suspension of Spherical Particles,” Fluid Dyn. 14(4), 598–602 (1980).

    Article  ADS  MATH  Google Scholar 

  4. G. D. Mehta and T. F. Morse, “Flow Through Charged Membranes,” J. Chem. Phys. 63(5), 1878–1889 (1974).

    Article  ADS  Google Scholar 

  5. D. D. Joseph and L. N. Tao, “The Effect of Permeability on the Slow Motion of a Porous Sphere in a Viscous Liquid,” Z. Angew. Math. Mech. 44(8/9), 361–364 (1964).

    Article  MATH  Google Scholar 

  6. G. S. Beavers and D. D. Joseph, “Boundary Conditions at a Naturally Permeable Wall,” J. Fluid Mech. 30(1), 197–207 (1967).

    Article  ADS  Google Scholar 

  7. G. P. Raja Sekhar and T. Amaranath, “Stokes Flow Inside a Porous Spherical Shell,” Z. Angew. Math. Mech. 51(3), 481–490 (2000).

    MathSciNet  MATH  Google Scholar 

  8. S. Deo, “Stokes Flow Past a Swarm of Porous Circular Cylinders with Happel and Kuwabara Boundary Conditions,” Sadhana 29(3), 381–387 (2004).

    Article  MATH  Google Scholar 

  9. A. N. Filippov, D. Y. Khanukaeva, S. I. Vasin, et al., “Liquid Flow Inside a Cylindrical Capillary with Walls Covered with a Porous Layer (Gel),” Colloid J. 75(2), 214–225 (2013).

    Article  Google Scholar 

  10. M. P. Singh and J. L. Gupta, “The Flow of a Viscous Fluid Past an Inhomogeneous Porous Cylinder,” Z. Angew. Math. Mech. 51(1), 17–25 (1971).

    Article  MATH  Google Scholar 

  11. I. V. Chernyshev, “The Stokes Problem for a Porous Particle with Radially Non-Uniform Porosity,” Fluid Dyn. 35(1), 147–152 (2000).

    Article  ADS  MATH  Google Scholar 

  12. D. Palaniappan and K. Archana, “Two-Dimensional Creeping Flows with Permeable Cylinders,” Z. Angew. Math. Mech. 77(10), 791–796 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. D. Noymer, L. R. Glicksman, and A. Devendran, “Drag on a Permeable Cylinder in Steady Flow at Moderate Reynolds Numbers,” Chem. Eng. Sci. 53(16), 2859–2869 (1998).

    Article  Google Scholar 

  14. S. Deo and P. K. Yadav, “Stokes Flow Past a Swarm of Porous Nanocylindrical Particles Enclosing a Solid Core,” Int. J. Math. Math. Sci. 2008, 1–8 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. Deo, P. K. Yadav, and A. Tiwari, “Slow Viscous Flow Through a Membrane Built up from Porous Cylindrical Particles with an Impermeable Core,” Appl. Math. Model. 34(5), 1329–1343 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. I. Vasin and T. V. Kharitonova, “Flow of Liquid Around the Encapsulated Drop of Another Liquid,” Colloid J. 73(3), 297–302 (2011).

    Article  Google Scholar 

  17. P. K. Yadav, “Slow Motion of a Porous Cylindrical Shell in a Concentric Cylindrical Cavity,” Meccanica 48(7), 1607–1622 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. N. Filippov, S. I. Vasin, and V. M. Starov, “Mathematical Modeling of the Hydrodynamic Permeability of a Membrane Built up from Porous Particles with a Permeable Shell,” Colloids Surfaces, A: Physicochem. Eng. Aspects 282/283, 272–278 (2006).

    Article  Google Scholar 

  19. P. K. Yadav, A. Tiwari, S. Deo, et al., “Hydrodynamic Permeability of Biporous Membrane,” Colloid J. 75(4), 473–482 (2013).

    Article  Google Scholar 

  20. I. B. Stechkina, “Drag of Porous Cylinders in a Viscous Fluid at Low Reynolds Numbers,” Fluid Dyn. 14(6), 912–915 (1979).

    Article  ADS  MATH  Google Scholar 

  21. M. Kohr, J. Prakash, G. P. Raja Sekhar, and W. L. Wendland, “Expansions at Small Reynolds Numbers for the Flow Past a Porous Circular Cylinder,” Appl. Anal. 88(7), 1093–1114 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. S. Valipour, S. Rashidi, M. Bovand, and R. Masoodi, “Numerical Modeling of Flow around and through a Porous Cylinder with Diamond Cross Section,” Europ. J. Mech., B-Fluid 46, 74–81 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. I. Vasin and A. N. Filippov, “Hydrodynamic Permeability of the Membrane as a System of Rigid Particles Covered with Porous Layer (Cell Model),” Kolloid. Zh. 66(3), 305–309 (2004).

    Google Scholar 

  24. A. G. Skirtach, A. A. Antipov, D. G. Shchukin, and G. B. Sukhorukov, “Remote Activation of Capsules Containing Ag Nanoparticles and IR Dye by Laser Light,” Langmuir 20(17), 6988–6992 (2004).

    Article  Google Scholar 

  25. J. J. L. Higdon and M. Kojima, “On the Calculation of Stokes’ Flow Past Porous Particles,” Int. J. Multiphase Flow 7(6), 719–727 (1981).

    Article  MATH  Google Scholar 

  26. J. L. Auriault, “On the Domain of Validity of Brinkman’s Equation,” Transport Porous Med. 79, 215–223 (2009).

    Article  MathSciNet  Google Scholar 

  27. S. Veerapaneni and M. R. Wiesner, “Hydrodynamics of Fractal Aggregates with Radially Varying Permeability,” J. Colloid Interface Sci. 177(1), 45–57 (1996).

    Article  ADS  Google Scholar 

  28. A. Tiwari, P. K. Yadav, and P. Singh, “Stokes Flow Through Assemblage of Non-Homogeneous Porous Cylindrical Particles Using Cell Model Technique,” Nat. Acad. Sci. Lett. 41(1), 53–57 (2018).

    Article  MathSciNet  Google Scholar 

  29. S. Deo, A. N. Filippov, A. Tiwari, et al., “Hydrodynamic Permeability of Aggregates of Porous Particles with an Impermeable Core,” Adv. Colloid Interface Sci. 164, 21–27 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Yadav.

Additional information

Original Russian Text © P.K. Yadav, P. Singh, A. Tiwari, S. Deo.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 5, pp. 41–52, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Singh, P., Tiwari, A. et al. Stokes Flow Through a Membrane Built up by Nonhomogeneous Porous Cylindrical Particles. J Appl Mech Tech Phy 60, 816–826 (2019). https://doi.org/10.1134/S0021894419050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419050055

Keywords

Navigation