Skip to main content
Log in

Experimental Study of the Impact and Penetration of A Cone in Frozen Sand

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A reverse experiment technique is used along with the technology of measuring rods to study the impact and penetration of a steel conical body in frozen sandy soil. This paper presents the dependences of maximum values of the force of resistance of cones with base diameters of 10.0, 12.0, and 19.8 mm to penetration into sand on the impact velocity in the range of values 100–400 m/s. The numerical solution of the problem in an axisymmetric formulation with the use of the “Dinamika-2” software package is used to show the effect of waves reflected from the walls of the container on the contact force. A comparative analysis of the forces of resistance to penetration of the shocker into compacted dry, water-saturated, and frozen sandy soils is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Bukharev, V. P. Gandurin, A. E. Korablev, et al., “Experimental Study of the Penetration of an Undeformable Shocker in a Clay Medium and Snow,” in Applied Problems of Strength and Plasticity. Analysis and Optimization of Structures, Vol. 48 (Lobachevsky University, Nizhny Novgorod, 1991).

    Google Scholar 

  2. C.W. Young, “Penetration Equations,” Contractor Report No. SAND 97–2426 (Sandia Nat. Lab., Albuquerque, 1997).

    Book  Google Scholar 

  3. M. Y. Lee, A. Fossum, L. S. Costin, et al., “Frozen Soil Material Testing and Constitutive Modeling,” Report No. SAND 2002–0524 (Sandia Nat. Lab., Albuquerque, 2002).

    Book  Google Scholar 

  4. M. Shazly, V. Prakash, and B. A. Lerch, “High Strain-Rate Behavior of Ice under Uniaxial Compression,” Int. J. Solids Struct. 46, 1499–1515 (2009).

    Article  MATH  Google Scholar 

  5. K. S. Carney, D. J. Benson, P. DuBois, et al., “A Phenomenological High Strain Rate Model with Failure for Ice,” Int. J. Solids Struct. 43, 7820–7839 (2006).

    Article  MATH  Google Scholar 

  6. A. Combescure, Y. Chuzel-Marmot, and J. Fabis, “Experimental Study of High-Velocity Impact and Fracture of Ice,” Int. J. Solids Struct. 48, 2779–2790 (2011).

    Article  Google Scholar 

  7. V. V. Balandin, A. M. Bragov, E. G. Glazova, et al., “Numerical-Experimental Study of Shock Loading of Ice,” Polar Mechanics, No. 3, 294–305 (2016).

    Google Scholar 

  8. T. Sain and R. Narasimhan, “Constitutive Modeling of Ice in the High Strain Rate Regime,” Int. J. Solids Struct. 48, 817–827 (2011).

    Article  MATH  Google Scholar 

  9. J. Pernas-Sanchez, D. A. Pedroche, D. Varas, et al., “Numerical Modeling of Ice Behavior under High Velocity Impacts,” Int. J. Solids Struct. 49, 1919–1927 (2012).

    Article  Google Scholar 

  10. S. Zhang, Y. Lai, Z. Sun, et al., “Volumetric Strain and Strength Behavior of Frozen Soils under Confinement,” Cold Regions Sci. Technol. 47, 263–270 (2007).

    Article  Google Scholar 

  11. Y. Lai, L. Jin, and X. Chang, “Yield Criterion and Elasto-Plastic Damage Constitutive Model for Frozen Sandy Soil,” Int. J. Plast. 25, 1177–1205 (2009).

    Article  MATH  Google Scholar 

  12. Y. Yang, Y. Lai, and J. Li, “Laboratory Investigation on the Strength of a Frozen Sand Considering Effect of Confining Pressure,” Cold Regions Sci. Technol. 60, 245–250 (2010).

    Article  Google Scholar 

  13. H. Du, W. Ma, S. Zhang, et al., “Strength Properties of Ice-Rich Frozen Silty Sands under Uniaxial Compression for a Wide Range of Strain Rates and Moisture Contents,” Cold Regions Sci. Technol. 123, 107–113 (2016).

    Article  Google Scholar 

  14. Qin-Yong Ma, “Experimental Analysis of Dynamic Mechanical Properties for Artificially Frozen Clay by the Split Hopkinson Pressure Bar,” Prikl. Mekh. Tekh. Fiz. 51 (3), 178–183 (2010) [J. Appl. Mech. Tech. Phys. 51 (3), 448–452 (2010)].

    Google Scholar 

  15. Q. Xie, Z. Zhu, and G. Kang, “Dynamic Stress–Strain Behavior of Frozen Soil: Experiments and Modeling,” Cold Regions Sci. Technol. 106/107, 153–160 (2014).

    Article  Google Scholar 

  16. Z. Zhu, G. Kang, Y. Ma, et al., “Temperature Damage and Constitutive Model of Frozen Soil Loading,” Mech. Materials. 102, 108–116 (2016).

    Article  Google Scholar 

  17. R. Yang, E. Lemarchand, T. Fen-Chong, et al., “A Micromechanics Model for Partial Freezing in Porous Media,” Int. J. Solids Struct. 75/76, 109–121 (2015).

    Article  Google Scholar 

  18. M. Christ and J. Park, “Ultrasonic Technique as a Tool for Determining Physical and Mechanical Properties of Frozen Soils,” Cold Regions Sci. Technol. 58, 136–142 (2009).

    Article  Google Scholar 

  19. J.-H. Park and J.-S. Lee, “Characteristics of Elastic Waves in Sand — Silt Mixtures Due to Freezing,” Cold Regions Sci. Technol. 9, 1–11 (2014).

    Article  Google Scholar 

  20. X. Z. Ling, F. Zhang, Q. L. Li, et al., “Dynamic Shear Modulus and Damping Ratio of Frozen Compacted Sand Subjected to Freeze—Thaw Cycle under Multi-Stage Cyclic Loading,” Soil Dyn. Earthquake Eng. 76, 111–121 (2015).

    Article  Google Scholar 

  21. V. V. Balandin and A. M. Bragov, “Experimental Technique for Measuring Forces Resistance in the Interaction of the Shocker with the Ground Environment,” in Applied Problems of Strength and Plasticity. Methods of Solution (Lobachevsky University, Nizhny Novgorod, 1991) [in Russian].

    Google Scholar 

  22. A. M. Bragov, V. V. Balandin, A. K. Lomunov, et al., “Methods for Determining the Shock Adiabat of Soft Soils According to the Results of Reverse Experiments,” Pis’ma Zh. Teor. Fiz. 32 (11), 52–55 (2006).

    Google Scholar 

  23. V. V. Balandin, A. M. Bragov, L. A. Igumnov, et al., “Dynamic Deformation of Soft Soils According to the Results of Reverse Experiments,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 3, 69–77 (2015).

    Google Scholar 

  24. A. M. Bragov, V. V. Balandin, V. V. Balandin, et al., “Experimental Study of the Dynamics of the penetration of a Solid Body into a Soil Medium,” Pis’ma Zh. Teor. Fiz. 86 (6), 62–70 (2016).

    Google Scholar 

  25. V. L. Kotov, A. M. Bragov, Vl. V. Balandin, et al., “The Study of the dynamic Resistance of Water-Saturated Sand to Shear According to the Results of Reverse Experiments,” Pis’ma Zh. Teor. Fiz. 43 (17), 64–70 (2017).

    Google Scholar 

  26. V. V. Balandin and V. L. Kotov, “Study of the Stress Pulse Propagation in an Elastic Cylindrical Rod,” Probl. Prochn. Plast. 78 (4), 388–395 (2016).

    Google Scholar 

  27. V. L. Kotov, Vl. V. Balandin, and V. Vl. Balandin, “Study of the Applicability of an Inverse Experiment to Determining the Dynamic Characteristics of Water-Saturated Soils,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., No. 3, 97–107 (2016).

    Google Scholar 

  28. V. A. Lagunov and V. A. Stepanov, “Measuring the Dynamic Compressibility of Sand under High Pressures,” Prikl. Mekh. Tekh. Fiz. 51 (3), 178–183 (2010).

    Google Scholar 

  29. V. G. Bazhenov, A. M. Bragov, and V. L. Kotov, “Experimental and Theoretical Study of Penetration of Rigid Projectiles and Identification of Soil Properties,” Prikl. Mekh. Tekh. Fiz. 50 (6), 115–125 (2009) [J. Appl. Mech. Tech. Phys. 50 (6), 1011–1019 (2009)].

    Google Scholar 

  30. V. V. Balandin, V. Vl. Balandin, A. M. Bragov, et al., “Experimental and Theoretical Study of Penetration of Spherical Solids into Wet Sand,” Prikl. Mekh. Tekh. Fiz. 56 (6), 46–50 (2015) [J. Appl. Mech. Tech. Phys. 56 (6), 972–976 (2015)].

    Google Scholar 

  31. E. G. Glazova, A. V. Kochetkov, and S. V. Krylov, “Numerical Simulation of Explosive Processes in Frozen Soil,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 6, 128–136 (2006).

    Google Scholar 

  32. E. G. Glazova, S. V. Zefirov, A. V. Kochetkov, et al., “Numerical Simulation of Normal Impact and Penetration of an Axisymmetric Body into Frozen Soil,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 5, 48–56 (2015).

    Google Scholar 

  33. S. S. Grigoryan, “Basic Concepts of Soil Dynamics,” Prikl. Mat. Mekh. 24 (6), 1057–1072 (1960).

    Google Scholar 

  34. V. L. Kotov, V. V. Balandin, A. M. Bragov, et al., “The “Using a Local-Interaction Model to Determine the Resistance to Penetration of Projectiles into Sandy Soil,” Prikl. Mekh. Tekh. Fiz. 54 (6), 114–125 (2015) [J. Appl. Mech. Tech. Phys. 54 (6), 612–621 (2015)].

    MATH  Google Scholar 

  35. N. A. Tsytovich, Mechanics of Frozen Soils. Textbook (Vysshaya Shkola, Moscow, 1973) [in Russian].

    Google Scholar 

  36. V. G. Bazhenov, V. L. Kotov “Modification of Godunov’s Numerical Scheme for Solving Problems of Pulsed Loading of Soft Soils,” Prikl. Mekh. Tekh. Fiz. 43 (4), 139–149 (2002) [J. Appl. Mech. Tech. Phys. 43 (4), 603–611 (2002)].

    MATH  Google Scholar 

  37. V. G. Bazhenov, S. V. Zefirov, A. V. Kochetkov, et al., ““Dinamika-2” Software Package for Solving Plane and Axisymmetric Nonlinear Problems of Nonstationary Interaction of Structures with Compressible Media,” Mat. Model. 12 (6), 67–72 (2000).

    Google Scholar 

  38. V. G. Bazhenov, A. M. Bragov, V. L. Kotov, et al., “Study of Impact and Penetration of Bodies of Revolution into Soft Soil,” Prikl. Mat. Mekh., No. 6, 686–697 (2003).

    MATH  Google Scholar 

  39. V. L. Kotov, Vl. V. Balandin, Vl. Vl. Balandin, et al., “Application of the Reverse Experiment to Study the Resistance of a Conical Shocker During Penetration in Frozen Sand,” Probl. Prochn. Plast. 79 (2), 182–193 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bragov.

Additional information

Original Russian Text © A.M. Bragov, Vl.V. Balandin, V.L. Kotov, Vl.Vl. Balandin, E.Yu. Linnik.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 3, pp. 111–120, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragov, A.M., Balandin, V.V., Kotov, V.L. et al. Experimental Study of the Impact and Penetration of A Cone in Frozen Sand. J Appl Mech Tech Phy 59, 482–490 (2018). https://doi.org/10.1134/S0021894418030124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418030124

Keywords

Navigation