Skip to main content
Log in

Mathematical modeling of heat transfer in a heat-shielding material

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The interaction of the cooling systems of permeable materials with a high-temperature gas flow is considered. The effect of the porosity and thermal properties of some metals on heat transfer is studied. It is found that increasing the thermal conductivity of the material leads to a decrease in the temperature of the heat-shielding coating and increasing the porosity to a more uniform distribution of the coolant applied on the surface and to a decrease in the heat loads on the structure to be protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Belov, Porous Metals in Machine Industry (Mashinostroenie, Moscow, 1981) [in Russian].

    Google Scholar 

  2. A. I. Leont’ev, E. P. Volchkov, V. P. Lebedev, et al., “Heat Shielding of Plasma Generators,” in Low-Temperature Plasma, Vol. 15 (Kutateladze Inst. of Thermal Physics, Sib. Branch, Russian Acad. of Sci., 1995) [in Russian].

    Google Scholar 

  3. V. I. Zinchenko, K. N. Efimov, and A. S. Yakimov, “Calculating the Conjugate Mass Transfer Characteristics with the Use of a Combined Heat Shielding System” Teplofiz. Vysok. Temp. 49 (1), 81–91 (2011).

    Google Scholar 

  4. A. M. Grishin, A. N. Golovanov, V. I. Zinchenko, K. N. Efimov, and A. S. Yakimov, Mathematical and Physical Modeling of Heat Shielding (Izd. Tomsk. Univ., Tomsk, 2011) [in Russian].

    Google Scholar 

  5. V. D. Sovershennyi, “Engineering Formulas for Calculation of Friction on a Permeable Surface in a Turbulent Gas Stream” Inzh.-Fiz. Zh. 12 (4), 538–543 (1967).

    Google Scholar 

  6. V. D. Sovershennyi, “Turbulent Boundary Layer on a Permeable Surface” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 45–51 (1966).

    Google Scholar 

  7. A. V. Bureev and V. I. Zinchenko, “Calculation of the Flow Field Past Spherically Blunted Cones near the Plane of Symmetry for Various Shock Layer Flow Regimes with Insufflation of Gas from the Surface” Prikl. Mekh. Tekh. Fiz. 32 (6), 72–79 (1991) [J. Appl. Mech. Tech. Phys. 32 (6), 359–368 (1991)].

    Google Scholar 

  8. Yu V. Polezhaev and F. B. Yurevich, Heat Shielding (Energiya, Moscow, 1976) [in Russian].

    Google Scholar 

  9. A. M. Grishin, A. N. Golovanov, and A. S. Yakimov, “Coupled Heat Transfer in a Composite Material” Prikl. Mekh. Tekh. Fiz. 32 (4), 141–148 (1991) [J. Appl. Mech. Tech. Phys. 32 (4), 600–607 (1991)].

    Google Scholar 

  10. A. N. Golovanov, E. V. Ruleva, and A. S. Yakimov, “Simulation of Heat and Mass Transfer of Porous Cooling Systems in the Presence of Small Energy Perturbation” Teplofiz. Vysok. Temp. 49 (6), 914–921 (2011).

    Google Scholar 

  11. V. E. Zinov’ev, Thermal and Physical Properties of Metals at High Temperatures. Reference Book (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  12. V. F. Zanemonets and V. I. Rodionov, “Experimental Study of Heat Transfer in a Granular Bound Layer,” in Heat and Mass Transfer: Proc. of the 1st Minsk International Forum, Minsk, May 24–27, 1988 (Heat and Mass Transfer Inst., Nat. Acad. of Sci. of Belarus, Minsk, 1988) [in Russian].

    Google Scholar 

  13. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  14. N. B. Vargaftik, Reference Book on Thermophysical Properties of Gases and Liquids (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  15. A. N. Golovanov and A. S. Yakimov, “Thermochemical Fracture of Carbon-Phenolic Material in a Pulsating High-Enthalpy Gas Flow” Inzh.-Fiz. Zh. 84 (2), 386–392 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ovchinnikov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 6, pp. 150–159, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, V.A., Yakimov, A.S. Mathematical modeling of heat transfer in a heat-shielding material. J Appl Mech Tech Phy 57, 1093–1100 (2016). https://doi.org/10.1134/S0021894416060171

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416060171

Keywords

Navigation