Skip to main content
Log in

Microstructure of the poiseuille flow in a model nanofluid by molecular dynamics simulation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The microscopic behavior of nanofluids in the Poiseuille flow in a nanochannel is examined by means of molecular dynamics simulation through visual observations and statistic analysis. For nanofluid flows inside the nanochannel, a clustering effect is observed during the time evolution of the system. The cluster moves along the centerline of the nanochannel due to the maximum velocity in the middle part of the Poiseuille flow. The attractive force is believed to be the primary culprit behind the agglomeration of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  2. S. Sarkar and R. P. Selvam, “Molecular Dynamics Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids,” J. Appl. Phys. 102, 074302 (2007).

    Article  ADS  Google Scholar 

  3. N. Sankar, N. Mathew, and C. B. Sobhan, “Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions,” Int. Comm. Heat Mass Transfer 35, 867–872 (2008).

    Article  Google Scholar 

  4. L. Li, Y. Zhang, H. Ma, and M. Yang, “Molecular Dynamics Simulation of Effect of Liquid Layering Around the Nanoparticle on the Enhanced Thermal Conductivity of Nanofluids,” J. Nanopart. Res. 12, 811–821 (2010).

    Article  Google Scholar 

  5. L. Xue, P. Keblinski, S. R. Phillpot, et al., “Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport,” Int. J. Heat Mass Transfer 47, 4277–4284 (2004).

    Article  MATH  Google Scholar 

  6. L. Li, Y. Zhang, H. Ma, and M. Yang, “An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation,” Phys. Lett. A 372 4541–4544 (2008).

    Article  MATH  ADS  Google Scholar 

  7. W. Evans, J. Fish, and P. Keblinski, “Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity,” Appl. Phys. Lett. 88, 093116 (2006).

    Article  ADS  Google Scholar 

  8. S. Merabia, S. Shenogin, L. Joly, et al., “Heat Transfer from Nanoparticles: A Corresponding State Analysis,” Appl. Phys. Sci. 106 (36), 15113–15118 (2009).

    Google Scholar 

  9. J. Z. Lv, W. Z. Cui, M. L. Bai, and X. J. Li, “Molecular Dynamics Simulation on Flow Behavior of Nanofluids between Flat Plates under Shear Flow Condition,” Microfluid Nanofluid 10, 475–480 (2011).

    Article  Google Scholar 

  10. J. Lv, M. Mai, W. Cui, and X. Li, “The Molecular Dynamic Simulation on Impact and Friction Characters of Nanofluids with Many Nanoparticles System,” Nanoscale Res. Lett. 6, 200 (2011).

    Article  ADS  Google Scholar 

  11. W. Cui, M. Bai, J. Lv, and X. Li, “On the Microscopic Flow Characteristics of Nanofluids by Molecular Dynamics Simulation on Couette Flow,” Open Fuels Energy Sci. J. 5, 21–27 (2012).

    Article  Google Scholar 

  12. W. Cui, M. Bai, J. Lv, et al., “On the Flow Characteristics of Nanofluids by Experimental Approach and Molecular Dynamics Simulation,” Exp. Thermal Fluid Sci. 39, 148–157 (2012).

    Article  Google Scholar 

  13. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117 (1), 1–19 (1995).

    Article  MATH  ADS  Google Scholar 

  14. A. S. Ziarani and A. A. Mohamad, “A Molecular Dynamics Study of Perturbed Poiseuille Flow in a Nanochannel,” Microfluid Nanofluid 2, 12–20 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Razmara.

Additional information

Original Russian Text © N. Razmara.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 5, pp. 183–190, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmara, N. Microstructure of the poiseuille flow in a model nanofluid by molecular dynamics simulation. J Appl Mech Tech Phy 56, 894–900 (2015). https://doi.org/10.1134/S002189441505017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441505017X

Keywords

Navigation