Skip to main content
Log in

Effect of the volume concentration of a set of water droplets moving through high-temperature gases on the temperature in the wake

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The processes of heat and mass transfer and phase transformations during motion of a set of water droplets through high-temperature gases have been studied numerically. The regimes and conditions of formation of zones of significant joint influence of the droplets on the integral characteristics of heat and mass transfer are determined. The values of the dimensionless parameters describing the dependence of the temperature of the gases in the wake of a small set droplets on their volume concentration and arrangement are calculated. The variations in these dimensionless parameters during motion of droplets through high-temperature gases are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Lebedev, V. V. Lemanov, S. Ya. Misyura, and V. I. Terekhov, “Effect of Flow Turbulence on Film Cooling Efficiency,” Int. J. Heat Mass Transfer 38 (11), 2117–2125 (1995).

    Article  Google Scholar 

  2. V. I. Terekhov, K. A. Sharov, and N. E. Shishkin, “Experimental Study of the Mixing of Gas Flow with a Near-Wall Gas-Droplet Jet,” Teplofiz. Aeromekh. 6 (3), 331–341 (1999).

    Google Scholar 

  3. V. I. Terekhov, M. A. Pakhomov, and A. V. Chichindaev, “Effect of Evaporation of Liquid Droplets on the Distribution of Parameters in a Two-Species Laminar Flow,” Prikl. Mekh. Tekh. Fiz. 41 (6), 68–71 (2000)

    MATH  Google Scholar 

  4. V. I. Terekhov, J. Appl. Mech. Tech. Phys. 41 (6), 1020–1028 (2000).

    Article  ADS  Google Scholar 

  5. S. S. Sazhin, W. A. Abdelghaffar, E. M. Sazhina, and M. R. Heikal, “Models for Droplet Transient Heating: Effects on Droplet Evaporation, Ignition, and Break-up,” Int. J. Thermal Sci. 44, 610–622 (2005).

    Article  Google Scholar 

  6. P. V. Maltsev and A. K. Rebrov, “Gas-Dynamic Colliders: Numerical Simulation,” Prikl. Mekh. Tekh. Fiz. 48 (3), 142–151 (2007)

    Google Scholar 

  7. P. V. Maltsev and A. K. Rebrov, J. Appl. Mech. Tech. Phys. 48 (3), 420–427 (2007).

    Article  ADS  Google Scholar 

  8. M. N. Nikitin, “Using a Vapor–Gas Mixture for Fuel Combustion,” Prom. Energ., No. 12, 37–42 (2010).

    Google Scholar 

  9. A. Yu. Dem’yanova, O. Yu. Dinariev, and E. N. Ivanov, “Simulation ofWater Transport with a Finely Dispersed Gas Phase in Porous Media,” Inzh.-Fiz. Zh. 85 (6), 1145–1154 (2012).

    Google Scholar 

  10. A. Yu. Varaksin, “Fluid Dynamics and Thermal Physics of Two-Phase Flows: Problems and Achievements,” Teplofiz. Vysok. Temp. 51 (3), 421–455 (2013).

    Google Scholar 

  11. O. N. Kashinskii, V. V. Randin, and A. V. Chinak, “Effect of the Orientation of the Channel on Heat Transfer and Friction in Bubble Flow,” Teplofiz. Aeromekh. 20 (4), 401–408 (2013).

    Google Scholar 

  12. D. A. Korol’chenko, V. Yu. Gromovoi, and O. O. Vorogushin, “Using Water Spray for Fire Suppression in High-Rise Buildings,” Pozahorvzryvobezopasnost’, No. 11, 54–57 (2011).

    Google Scholar 

  13. E.A. Isaev, I. E. Chernetskaya, L. N. Krakht, and V. S. Titov, Theory of Control of Pelletizing of Bulk Materials (Tonkie Naukoemkie Tekhnologii, Staryi Oskol, 2012) [in Russian].

    Google Scholar 

  14. B. N. Mar’in, V. A. Kim, and O. E. Sysoev, Surface Treatment in Metallurgy and Mechanical Engineering (Dal’nauka, Vladivostok, 2011) [in Russian].

    Google Scholar 

  15. V. V. Dubovitskii, A. M. Podvysotskii, and A. A. Shraiber, “Measurement of the Period of Natural Oscillations of Droplets and Two-Component Particles,” Inzh.-Fiz. Zh. 58 (5), 804–808 (1990).

    Google Scholar 

  16. E. H. Trinh, R. G. Holt, and D. B. Thiessen, “The Dynamics of Ultrasonically Levitated Drops in an Electric Field,” Phys. Fluids 8 (1), 43–61 (1996).

    Article  ADS  Google Scholar 

  17. J. Westerweel, “Fundamentals of Digital Particle Image Velocimetry,” Measurement Sci. Technol. 8, 1379–1392 (1997).

    Article  ADS  Google Scholar 

  18. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, “Heat and Mass Transfer during Motion of Water Droplets in a High-Temperature Gas Medium,” Inzh.-Fiz. Zh. 86 (1), 59–65 (2013).

    Google Scholar 

  19. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Numerical Study of Heat and Mass Transfer during Motion of a Tandem ofWater Droplets in a High Temperature Gas Medium,” Tepl. Prots. Tekh., No. 12, 531–538 (2012).

    Google Scholar 

  20. P. A. Strizhak, “Influence of the Distribution of Droplets in a Water Projectile on the Temperature and Concentration of Combustion Products in Its Wake,” Inzh.-Fiz. Zh. 86 (4), 839–848 (2013).

    Google Scholar 

  21. G. V. Kuznetsov and P. A. Strizhak, “Influence of the Shape of a Water Droplet on the Results of Mathematical Modeling of Its Evaporation during Motion through High-Temperature Combustion Products,” Tepl. Prots. Tekh., No. 6, 254–261 (2013).

    Google Scholar 

  22. G. V. Kuznetsov and P. A. Strizhak, “Numerical Study of the Effect of Convection in a Mixture of Combustion Products on the Integral Characteristics of Evaporation of a Moving Droplet of a Water Spray,” Inzh.-Fiz. Zh. 87 (1), 98–106 (2014).

    Google Scholar 

  23. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas-Droplet Flows (Novosibirsk State Technical University, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  24. B.M. Pankratov, Yu. V. Polezhaev, and A. K. Rud’ko, Interaction of Materials with Gas Flows (Mashinostroenie, Moscow, 1976) [in Russian].

    Google Scholar 

  25. A. Ya. Korol’chenko and D. A. Korol’chenko, Fire and Explosion Safety of Substances and Materials and Means for Their Extinguishing (Pozhnauka, Moscow, 2004), Part 1 [in Russian].

    Google Scholar 

  26. Ya. E. Geguzin, Droplet (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  27. L. G. Loitsyanskii, Fluid Mechanics (Nauka, Moscow, 1970; Oxford–New York, 1966)).

    Google Scholar 

  28. D. G. Pazhi and V. S. Galustov, Fundamentals of Liquid Spray Engineering (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  29. Yu. A. Koshmarov and Yu. A. Ryzhov, Applied Rarefied Gas Dynamics (Mashinostroenie, Moscow, 1977) [in Russian].

    Google Scholar 

  30. V. P. Shidlovskii, Rarefied Gas Dynamics, (Mir, Moscow, 1976) [Russian translation].

    Google Scholar 

  31. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum, New York, 1969).

    Google Scholar 

  32. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of Heat and Mass Transfer (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  33. A. B. Basset, “On the Motion of a Sphere in a Viscous Liquid,” Philos. Trans. Roy. Soc. London, Ser. A 179, 43–69 (1888).

    Article  MATH  ADS  Google Scholar 

  34. J. V. Boussinesq, “Sur la Drag D’une Sphere Solide,” C. R. Acad. Sci. Paris 100, 935–937 (1885).

    MATH  Google Scholar 

  35. C. W. Oseen, Hydromechanik (Akademische Verlagsgem, Leipzig, 1927).

    Google Scholar 

  36. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  37. E. P. Mednikov, Turbulent Transport and Deposition of Aerosols (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  38. A. A. Shraiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko, Turbulent Flows of Gas–Particle Mixtures (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  39. P. Eisenklam, S. A. Arunachalam, and J. A. Weston, “Evaporation Rates and Drag Resistance of Burning Drops,” in Proc. of the 11th Symp. on Combustion, Pittsburg (USA), 1967 (Combust. Instof Pittsburg, Pittsburg, 1967), pp. 715–728.

    Google Scholar 

  40. S. L. Soo, Fluid Dynamics of Multiphase Systems (Blaisdell, Waltham, 1967).

    MATH  Google Scholar 

  41. C. M. Tchen, Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Fluid (Martinus Nijhoff, Hague, 1947).

    Google Scholar 

  42. T. M. Muratova and D. A. Labuntsov, “Kinetic Analysis of Evaporation and Condensation Processes,” Teplofiz. Vysok. Temp. 7 (5), 959–967 (1969).

    Google Scholar 

  43. O. Knacke and I. N. Stranski, “The Mechanism of Evaporation,” Usp. Fiz. Nauk 68 (2), 261–305 (1959).

    Google Scholar 

  44. A. A. Avdeev and Yu. B. Zudin, “Kinetic Analysis of Intense Evaporation (Method of Inverse Balances),” Teplofiz. Vysok. Temp. 50 (4), 565–574 (2012).

    Google Scholar 

  45. S. S. Kutateladze, Fundamentals of the Theory of Heat Transfer (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  46. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  47. N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids (Stars, Moscow, 2006) [in Russian].

    Google Scholar 

  48. V. N. Yurenev and P. D. Lebedev, Thermal Engineering Handbook, (Energiya, Moscow, 1975). Vol. 1 [in Russian].

    Google Scholar 

  49. M. S. Volynskii, The Extra Ordinary Life of an Ordinary Droplet (Znanie, Moscow, 1986) [in Russian].

    Google Scholar 

  50. R. S. Volkov, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, “Experimental Study of Mass Changes of Water Droplets during Their Motion through High-Temperature Combustion Products,” Inzh.-Fiz. Zh. 86 (6), 1327–1332 (2013).

    Google Scholar 

  51. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, “Evaporation of Two Water Droplets Moving through High-Temperature Combustion Products,” Teplofiz. Aeromekh. 21 (2), 269–272 (2014).

    Google Scholar 

  52. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, “Effect of the Initial Parameters of Water Spray on the Characteristics of Its Motion through an Opposed Flow of High-Temperature Gases,” Zh. Tekh. Fiz. 84 (7), 15–23 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kuznetsov.

Additional information

Original Russian Text © G.V. Kuznetsov, P.A. Strizhak.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 4, pp. 23–35, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.V., Strizhak, P.A. Effect of the volume concentration of a set of water droplets moving through high-temperature gases on the temperature in the wake. J Appl Mech Tech Phy 56, 558–568 (2015). https://doi.org/10.1134/S0021894415040033

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415040033

Keywords

Navigation