Skip to main content
Log in

Experimental study of nonlinear processes in a swept-wing boundary layer at the mach number M=2

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of experiments aimed at studying the linear and nonlinear stages of the development of natural disturbances in the boundary layer on a swept wing at supersonic velocities are presented. The experiments are performed on a swept wing model with a lens-shaped airfoil, leading-edge sweep angle of 45°, and relative thickness of 3%. The disturbances in the flow are recorded by a constant-temperature hot-wire anemometer. For determining the nonlinear interaction of disturbances, the kurtosis and skewness are estimated for experimentally obtained distributions of the oscillating signal over the streamwise coordinate or along the normal to the surface. The disturbances are found to increase in the frequency range from 8 to 35 kHz in the region of their linear development, whereas enhancement of high-frequency disturbances is observed in the region of their nonlinear evolution. It is demonstrated that the growth of disturbances in the high-frequency spectral range (f > 35 kHz) is caused by the secondary instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Arnal, G. Casalis, and J. C. Juillen, “Experimental and Theoretical Analysis of Natural Transition on ‘Infinite’ Swept Wing,” in Laminar-Turbulent Transition (Springer-Verlag, Berlin, 1990), pp. 311–325.

    Chapter  Google Scholar 

  2. H. L. Reed and W. S. Saric, “Stability of Three-Dimensional Boundary Layers,” Ann. Rev. Fluid Mech. 21, 235–284 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. V. Boiko, G. R. Grek, A. V. Dovgal, and V. V. Kozlov, Origination of Turbulence in Near-wall Flows (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  4. H. Bippes, “Basic Experiments on Transition in Three-Dimensional Boundary Layers Dominated by Crossflow Instability,” Prog. Aerospace Sci. 35, 363–412 (1999).

    Article  ADS  Google Scholar 

  5. D. I. A. Poll, “Some Observations on the Transition Process on the Wind Ward Face of a Long Yawed Cylinder,” J. Fluid Mech. 150, 329–356 (1985).

    Article  ADS  Google Scholar 

  6. Y. Kohama, “Some Expectations on the Mechanism of Cross-Flow Instability in a Swept-Wing Flow,” Acta Mech. 66, 21–38 (1987).

    Article  Google Scholar 

  7. T. M. Fischer and U. Dallmann, “Primary and Secondary Stability Analysis of a Three-Dimensional Boundary-Layer Flow,” Phys. Fluids A 3, 2378–2391 (1991).

    Article  MATH  ADS  Google Scholar 

  8. P. Nitschke-Kowsky and H. Bippes, “Instability and Transition of a Three-Dimensional Boundary Layer on a Swept Flat Plate,” Phys. Fluids 31, 786–795 (1988).

    Article  ADS  Google Scholar 

  9. Y. Kohama, W. S. Saric, and J. A. Hoos, “A High-Frequency, Secondary Instability of Cross-Flow Vortices that Leads to Transition,” in Proc. Conf. on the Boundary Layer Transition and Control, Cambridge, April 8–12, 1991 (Roy. Aeronaut. Soc., London, 1991), pp. 4.1–4.13.

    Google Scholar 

  10. H. Deyhle and H. Bippes, “Disturbance Growth in an Unstable Three-Dimensional Boundary Layer and Its Dependence on Environmental Conditions,” J. Fluid Mech. 316, 73–113 (1996).

    Article  ADS  Google Scholar 

  11. M. Kawakami, Y. Kohama, and M. Okutsu, “Stability Characteristics of Stationary Crossflow Vortices in Three-Dimensional Boundary Layer,” AIAA Paper No. 99-0811 (1999).

    Google Scholar 

  12. V. G. Chernoray, A. V. Dovgal, V. V. Kozlov, and L. Loefdahl, “Experiments on Secondary Instability of Streamwise Vortices in a Swept-Wing Boundary Layer,” J. Fluid Mech. 534, 295–325 (2005).

    Article  MATH  ADS  Google Scholar 

  13. A. V. Boiko, V. V. Kozlov, V. V. Syzrantsev, and V. A. Shcherbakov, “Experimental Investigation of High-Frequency Secondary Disturbances in a Swept-Wing Boundary Layer,” Prikl. Mekh. Tekh. Fiz. 36(3), 74–83 (1995) [Appl. Mech. Tech. Phys. 36 (3), 385–393 (1995)].

    Google Scholar 

  14. E. White and W. Saric, “Secondary Instability of Crossflow Vortices,” J. Fluid Mech. 525, 275–308 (2005).

    Article  MATH  ADS  Google Scholar 

  15. M. R. Malik, F. Li, M. M. Choudhari, and C.-L. Chang, “Secondary Instability of Crossflow Vortices and Swept-Wing Boundary-Layer Transition,” J. Fluid Mech. 399, 85–115 (1999).

    Article  MATH  ADS  Google Scholar 

  16. P. Wassermann and M. Kloker, “Transition Mechanisms Induced by Travelling Crossflow Vortices in a Three-Dimensional Boundary Layer,” J. Fluid Mech. 483, 67–89 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. W. Koch, F. P. Bertolotti, A. Stolte, and S. Hein, “Nonlinear Equilibrium Solutions in a Three-Dimensional Boundary Layer and Their Secondary Instability,” J. Fluid Mech. 406, 131–174 (2000).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. T. S. Haynes and H. L. Reed, “Simulation of Swept-Wing Vortices Using Nonlinear Parabolized Stability Equations,” J. Fluid Mech. 405, 325–349 (2000).

    Article  MATH  ADS  Google Scholar 

  19. M. Högberg and D. Henningson, “Secondary Instability of Crossflow Vortices in Falkner-Skan-Cooke Boundary Layers,” J. Fluid Mech. 368, 339–357 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. M. R. Malik, F. Li, and C.-L. Chang, “Nonlinear Crossflow Disturbances and Secondary Instabilities in Swept-Wing Boundary Layers,” in Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (Kluwer, Dordrecht, 1996), pp. 257–266.

    Chapter  Google Scholar 

  21. C. Mielke and L. Kleiser, “Investigation of Transition to Turbulence in a 3D Supersonic Boundary Layer,” in Laminar-Turbulent Transition (Springer-Verlag, Berlin, 2000), pp. 397–402.

    Chapter  Google Scholar 

  22. F. Li and M. Choudhary, “Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers,” Theoret. Comput. Fluid Dyn. 25, 65–84 (2011).

    Article  MATH  ADS  Google Scholar 

  23. W. S. Saric and H. L. Reed, “Supersonic Laminar Flow Control on Swept Wings Using Distributed Roughness,” AIAA Paper No. 2002-0147 (2002).

    Google Scholar 

  24. Yu. G. Ermolaev, A. D. Kosinov, V. Ya. Levchenko, and N. V. Semenov, “Instability of a Three-Dimensional Boundary Layer,” Prikl. Mekh. Tekh. Fiz. 36(6), 50–54 (1995) [Appl. Mech. Tech. Phys. 36 (6), 840–843 (1995)].

    Google Scholar 

  25. N. V. Semionov, Yu. G. Ermolaev, A. D. Kosinov, and V. Ya. Levchenko, “Experimental Investigation of Development of Disturbances in a Supersonic Boundary Layer on a Swept Wing,” Teplofiz. Aeromekh. 10(3), 357–368 (2003) [Thermophys. Aeromech. 10 (3), 347–358 (2003)].

    Google Scholar 

  26. N. V. Semionov and A. D. Kosinov, “Method of Laminar-Turbulent Transition Control of Supersonic Boundary Layer on a Swept Wing,” Teplofiz. Aeromekh. 14(3), 353–357 (2007) [Thermophys. Aeromech. 14 (3), 337–342 (2007)].

    Google Scholar 

  27. N. V. Semionov, Yu. G. Ermolaev, and A. D. Kosinov, “Evolution of Disturbances in a Laminarized Supersonic Boundary Layer on a Swept Wing,” Prikl. Mekh. Tekh. Fiz. 49(2), 40–46 (2008) [Appl. Mech. Tech. Phys. 49 (2), 188–193 (2008)].

    Google Scholar 

  28. Yu. G. Ermolaev, A. D. Kosinov, and N. V. Semionov, “Experimental Investigation of Stability of a Supersonic Boundary Layer on a Swept Wing at M = 2,” Uch. Zap. TsAGI 42(1), 3–11 (2011).

    Google Scholar 

  29. G. L. Kolosov, A. V. Panina, A. D. Kosinov, et al., “Spatial Wave Structure of Controlled Disturbances in a Three-Dimensional Supersonic Boundary Layer,” Vestn. Novosib. Gos. Univ., Ser. Fiz. 6(4), 5–15 (2011).

    Google Scholar 

  30. S. A. Gaponov and B. V. Smorodskii, “Linear Stability of Three-Dimensional Boundary Layers,” Prikl. Mekh. Tekh. Fiz. 49(2), 3–14 (2008) [Appl. Mech. Tech. Phys. 49 (2), 157–166 (2008)].

    Google Scholar 

  31. A. D. Kosinov, N. V. Semionov, and Yu. G. Yermolaev, “Disturbances in Test Section of T-325 Supersonic Wind Tunnel,” Preprint No. 6-99 (Inst. Theor. Appl. Mech., Sib. Branch, Russian Acad. of Sci., Novosibirsk, 1999).

    Google Scholar 

  32. E. N. L’vovskii, Statistical Methods of Constructing Empirical Formulas (Vysshaya Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  33. M. Kendall and R. L. Kimmel, “Nonlinear Disturbances in Hypersonic Laminar Boundary Layer,” AIAA Paper No. 91-0320 (1990).

    Google Scholar 

  34. A. D. Kosinov and A. I. Semisynov, “Character of Evolution of Natural Disturbances in a Supersonic Boundary Layer on a Flat Plate,” Teplofiz. Aeromekh. 10(1), 41–46 (2003) [Thermophys. Aeromech. 10 (1), 39–44 (2003)].

    Google Scholar 

  35. N. Chokani, D. A. Bountin, A. N. Shiplyuk, and A. A. Maslov, “Nonlinear Aspects of Hypersonic Boundary-Layer Stability on a Porous Surface,” AIAA J. 43(1), 149–155 (2005).

    Article  ADS  Google Scholar 

  36. N. V. Semionov, A. D. Kosinov, and Yu. G. Yermolaev, “Experimental Study of Turbulence Beginning of Supersonic Boundary Layer on Swept Wing at Mach Numbers 2–4,” J. Phys. Conf. Ser. 318, 1–10 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Yermolaev.

Additional information

Original Russian Text © Yu.G. Yermolaev, A.D. Kosinov, N.V. Semionov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 55, No. 5, pp. 45–54, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermolaev, Y.G., Kosinov, A.D. & Semionov, N.V. Experimental study of nonlinear processes in a swept-wing boundary layer at the mach number M=2. J Appl Mech Tech Phy 55, 764–772 (2014). https://doi.org/10.1134/S0021894414050058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894414050058

Keywords

Navigation