Skip to main content
Log in

Influence of Electron Confinement Effects on the Band Gap of Almost Monatomic EuS2 Layers

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Europium disulfide is a layered semiconductor with a quasi-ionic bond type. Previously, it has been demonstrated that almost monatomic films can be formed from this material by mechanical splitting. In this work, the most energetically favorable structure of monatomic films is established using ab initio calculations, and the behavior of the band gap depending on the number of monolayers in the film is studied. To establish the role of nonlocal corrections and corrections associated with the spin–orbit interaction, the calculation results are compared with the position of the direct fundamental absorption edge of bulk crystals estimated from the experimental hot photoluminescence and microreflection spectra. It is found that the indirect character of the band gap is also retained in thin films. The confinement effects (dimensional localization of electrons) cause inhomogeneous broadening of the band gap over the Brillouin zone. The gap width almost does not change between the bulk material and its films at the edges of the Brillouin zone, and a significant change occurs only in the center of the Brillouin zone. A singularity in the density of states caused by the equalization of the energies for the D and E0 points of the Brillouin zone is predicted in EuS2 films about 10 ML thick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.‑Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).

    Article  ADS  Google Scholar 

  2. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  3. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).

    Article  ADS  Google Scholar 

  4. L. A. Chernozatonskii and A. A. Artyukh, Phys. Usp. 61, 2 (2018).

    Article  ADS  Google Scholar 

  5. M. M. Glazov and E. L. Ivchenko, JETP Lett. 113, 7 (2021).

    Article  ADS  Google Scholar 

  6. M. M. Mahmoodian and A. V. Chaplik, JETP Lett. 114, 545 (2021).

    Article  ADS  Google Scholar 

  7. V. S. Krivobok, E. A. Ekimov, M. V. Kondrin, S. N. Nikolaev, M. A. Chernopitssky, A. A. Deeva, D. A. Litvinov, and I. I. Minaev, Phys. Rev. Mater. 6, 094605 (2022).

  8. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, Science (Washington, DC, U. S.) 353, aac9439 (2016).

  9. G. V. Samsonov and S. V. Radzikovskaya, Russ. Chem. Rev. 30, 28 (1961).

    Article  ADS  Google Scholar 

  10. A. Eliseev, V. Tolstova, and G. Kuzmicheva, Russ. J. Inorg. Chem. 23, 3171 (1978).

    Google Scholar 

  11. A. Eliseev and O. Sadovskaya, Inorg. Mater. 13, 1394 (1977).

    Google Scholar 

  12. G. Kuzmicheva, Russ. J. Inorg. Chem. 39, 412 (1994).

    Google Scholar 

  13. C. J. Müller, U. Schwarz, and T. Doert, Zeitschr. Anorg. Allgem. Chem. 638, 2477 (2012).

    Article  Google Scholar 

  14. C. Bartsch, E. Ahrens, and T. Doert, Zeitschr. Anorg. Allgem. Chem. 638, 2491 (2012).

    Article  Google Scholar 

  15. C. J. Müller, T. Doert, and U. Schwarz, Zeitschr. Kristallogr. 226, 646 (2011).

    Article  ADS  Google Scholar 

  16. C. J. Müller, U. Schwarz, P. Schmidt, W. Schnelle, and T. Doert, Zeitschr. Anorg. Allgem. Chem. 636, 947 (2010).

    Article  Google Scholar 

  17. P. Böttcher, T. Doert, H. Arnold, and R. Tamazyan, Z. Kristallogr.—Cryst. Mater. 215, 246 (2000).

    Google Scholar 

  18. R. Tamazyan, H. Arnold, V. Molchanov, G. Kuzmicheva, and I. Vasileva, Z. Kristallogr.—Cryst. Mater. 215, 346 (2000).

    Google Scholar 

  19. R. Tamazyan, H. Arnold, V. Molchanov, G. Kuzmicheva, and I. Vasileva, Z. Kristallogr.—Cryst. Mater. 215, 272 (2000).

    ADS  Google Scholar 

  20. Y. Yanagisawa and S. Kume, Mater. Res. Bull. 21, 379 (1986).

    Article  Google Scholar 

  21. S. Benazeth, M. Guittard, and J. Flahaut, J. Solid State Chem. 37, 44 (1981).

    Article  ADS  Google Scholar 

  22. Y. Yanagisawa, F. Kanamaru, and S. Kume, Acta Crystallogr., Sect. B 35, 137 (1979).

    Article  Google Scholar 

  23. J. Dugué, D. Carré, and M. Guittard, Acta Crystallogr., Sect. B 34, 403 (1978).

    Article  Google Scholar 

  24. S. Smoes, J. Drowart, and J. Welter, in Advances in Mass Spectrometry, Proceedings of the 7th International Conference, Florence, Aug. 30–Sept. 3, 1976 (Heyden Inst. Petroleum, London, 1978), p. 622.

  25. Y. Yanagisawa and S. Kume, Mater. Res. Bull. 8, 1241 (1973).

    Article  Google Scholar 

  26. A. W. Webb and H. T. Hall, Inorg. Chem. 9, 1084 (1970).

    Article  Google Scholar 

  27. B. Kolesov and I. Vasilyeva, Mater. Res. Bull. 27, 775 (1992).

    Article  Google Scholar 

  28. E. A. Ekimov, S. N. Nikolaev, A. G. Ivanova, V. A. Sidorov, A. A. Shiryaev, I. I. Usmanov, A. L. Vasiliev, V. V. Artemov, M. V. Kondrin, M. A. Chernopitsskiy, and V. S. Krivobok, CrystEngComm 25, 2966 (2023).

    Article  Google Scholar 

  29. P. Giannozzi, O. Andreussi, T. Brumme, et al., J. Phys.: Condens. Matter 29, 465901 (2017).

  30. S. Nikolaev, M. Chernopitssky, V. Bagaev, V. Krivobok, E. Onishchenko, K. Savin, A. Y. Klokov, S. Chentsov, and V. Martovitskiy, J. Lumin. 231, 117812 (2021).

  31. V. P. Zhukov, N. I. Medvedeva, I. G. Vasil’eva, and V. A. Gubanov, Sov. Phys. Solid State 32, 2133 (1990).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 3-22-00444, Section 4) and by the M-inistry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2021-1316 dated September 30, 2021, Program of Strategic Academic Leadership Priority-2030, experimental part in Section 3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Kondrin or V. S. Krivobok.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekimov, E.A., Nikolaev, S.N., Kondrin, M.V. et al. Influence of Electron Confinement Effects on the Band Gap of Almost Monatomic EuS2 Layers. Jetp Lett. 118, 266–272 (2023). https://doi.org/10.1134/S0021364023602191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602191

Navigation