Skip to main content
Log in

Self-Sustained Oscillations of the Torque under High-Pressure Torsion in an NdFeB Alloy

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The behavior of an NdFeB-based multicomponent alloy subjected to high-pressure torsion has been studied. The high-pressure torsion results in the partial amorphization of the alloy, where the fractions of the amorphous and crystal phases vary in the process of torsion. The torque increases smoothly with the angle of rotation of anvils, and self-sustained oscillations of the torque appear beginning with a certain torsion (~1000°). The torque varies from 500 to 600 N m with a period of about 1.5 s. The torsion of the alloy in the regime of self-sustained oscillations is accompanied by intense acoustic emission at a frequency of ~1–2 s–1. This phenomenon can be explained by the periodic change in the mechanism of the high-pressure torsion from the dislocation one (characteristic of the crystal phase) to the dislocation-free mechanism (typical of the amorphous state).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Schrefl, J. Fidler, and H. Kronmüller, Phys. Rev. B 49, 6100 (1994).

    Article  ADS  Google Scholar 

  2. K. H. J. Buschow, Mater. Sci. Rep. 1, 1 (1986).

    Article  Google Scholar 

  3. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).

    Article  ADS  Google Scholar 

  4. J. Lucas, P. Lucas, T. le Mercier, A. Rollat, and W. Davenport, Rare Earths: Science, Technology, Production and Use (Elsevier, Amsterdam, 2015).

    Google Scholar 

  5. W. Rodewald, Handbook of Magnetism and Advanced Magnetic Materials, Rare-Earth Transition-Metal Magnets (Wiley, Chichester, UK, 2007).

    Google Scholar 

  6. D. Goll and H. Kronmuller, Naturwissenschaften 87, 423 (2000).

    Article  ADS  Google Scholar 

  7. J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).

    Article  ADS  Google Scholar 

  8. A. Manaf, R. A. Buckley, and H. A. Davies, J. Magn. Magn. Mater. 128, 302 (1993).

    Article  ADS  Google Scholar 

  9. K. Edalati, A. Bachmaier, V. Beloshenko, et al., Mater. Res. Lett. 10, 163 (2022).

    Article  Google Scholar 

  10. Y. Ivanisenko, X. Sauvage, A. Mazilkin, A. Kilmametov, J. A. Beach, and B. Straumal, Adv. Eng. Mater. 20, 1800443 (2018).

  11. B. B. Straumal, X. Sauvage, B. Baretzky, A. Mazilkin, and R. Valiev, Scr. Mater. 70, 59 (2014).

    Article  Google Scholar 

  12. Y. Ivanisenko, A. Mazilkin, I. Gallino, S. Riegler, S. Doyle, A. Kilmametov, O. Fabrichnaya, and M. Heilmaier, J. Alloys Compd. 905, 164201 (2022).

  13. B. B. Straumal, A. R. Kilmametov, A. A. Mazilkin, A. S. Gornakova, O. B. Fabrichnaya, M. J. Kriegel, D. Rafaja, M. F. Bulatov, A. N. Nekrasov, and B. Baretzky, JETP Lett. 111, 568 (2020).

    Article  ADS  Google Scholar 

  14. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. R. Kilmametov, A. V. Druzhinin, and B. Baretzky, JETP Lett. 112, 37 (2020).

    Article  ADS  Google Scholar 

  15. R. Z. Valiev, B. Straumal, and T. G. Langdon, Ann. Rev. Mater. Sci. 52, 357 (2022).

    Article  ADS  Google Scholar 

  16. B. B. Straumal, A. Kilmametov, A. Mazilkin, S. G. Protasova, K. I. Kolesnikova, P. B. Straumal, and B. Baretzky, Mater. Lett. 145, 63 (2015).

    Article  Google Scholar 

  17. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, D. V. Gunderov, G. A. López, and B. Baretzky, Mater. Lett. 161, 735 (2015).

    Article  Google Scholar 

  18. B. B. Straumal, A. Kilmametov, Y. Ivanisenko, A. Mazilkin, O. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zięba, and B. Baretzky, Int. J. Mater. Res. 106, 657 (2015).

    Article  Google Scholar 

  19. S. N. Naik and S. M. Walley, J. Mater. Sci. 55, 2661 (2020).

    Article  ADS  Google Scholar 

  20. A. L. Greer, Y. Q. Cheng, and E. Ma, Mater. Sci. Eng. R 74, 71 (2013).

    Article  Google Scholar 

  21. R. V. Sundeev, A. V. Shalimova, N. N. Sitnikov, O. P. Chernogorova, A. M. Glezer, Yu. Presnyakov, A. Karateev, A. Pechina, and A. V. Shelyakov, J. Alloys Compd. 845, 156273 (2020).

Download references

ACKNOWLEDGMENTS

The experimental studies were carried out using the equipment of the Joint Use Center, Institute of Solid State Physics, Russian Academy of Sciences. We are grateful to A. Kilmametov (Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany) for assistance in the use of the high-pressure torsion machine and to the Joint Use Center, Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany, for the access to the Titan 80-300 microscope.

Funding

This work was supported by the Russian Science Foundation (project no. 22-23-00613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazilkin, A.A., Protasova, S.G., Straumal, B.B. et al. Self-Sustained Oscillations of the Torque under High-Pressure Torsion in an NdFeB Alloy. Jetp Lett. 116, 698–702 (2022). https://doi.org/10.1134/S0021364022602147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022602147

Navigation