Skip to main content
Log in

Influence of Crystallization on the 3D Structure of Pores in Ferroelectric PZT Films

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The structure of porous lead titanate–zirconate films, obtained by chemical deposition from solutions containing Brij 76, has been visualized for the first time using focused ion beam scanning electron microscopy nanotomography. Several techniques for determining the connectivity of pores and their distribution are presented. It is shown that the films have a highly connected system of pores regularly distributed in sublayers; this system is formed during multilayer deposition and subsequent crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. L. Efros, M. Rosen, B. Averboukh, D. Kovalev, M. Ben-Chorin, and F. Koch, Phys. Rev. B 56, 3875 (1997).

    Article  ADS  Google Scholar 

  2. I. A. Kolmychek, I. V. Malysheva, V. B. Novikov, A. I. Maydykovskiy, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, JETP Lett. 114, 653 (2021).

    Article  ADS  Google Scholar 

  3. N. V. Mitetelo, S. E. Svyakhovskiy, A. D. Gartman, A. A. Kudrinskii, T. V. Murzina, and A. I. Maidykovskiy, JETP Lett. 107, 297 (2018)

    Article  ADS  Google Scholar 

  4. S. M. Gates, D. A. Neumayer, M. H. Sherwood, A. Grill, X. Wang, and M. Sankarapandian, J. Appl. Phys. 101, 094103 (2007).

  5. M. R. Baklanov and K. Maex, Philos. Trans. R. Soc. London, Ser. A 364, 201 (2006).

    Google Scholar 

  6. L. A. Golovan’, V. A. Mel’nikov, S. O. Konorov, A. B. Fedotov, S. A. Gavrilov, A. M. Zheltikov, P. K. Kashkarov, V. Yu. Timoshenko, G. I. Petrov, L. Li, and V. V. Yakovlev, JETP Lett. 78, 193 (2003).

    Article  ADS  Google Scholar 

  7. J.-M. Yi, D. Wang, F. Schwarz, J. Zhong, A. Chimeh, A. Korte, J. Zhan, P. Schaaf, E. Runge, and C. Lienau, ACS Photon. 6, 2779 (2019).

  8. V. A. Morozov, A. G. Zegrya, G. G. Zegrya, and G. G. Savenkov, JETP Lett. 114, 625 (2021).

    Article  ADS  Google Scholar 

  9. V. Stancu, M. Buda, L. Pintilie, M. Popescu, and F. Sava, J. Optoelectron. Adv. Mater. 9, 1516 (2007).

    Google Scholar 

  10. A. Matavž, P. Koželj, M. Winkler, K. Geirhos, P. Lunkenheimer, and V. Bobnar, Thin Solid Films 732, 138740 (2021).

  11. J. Roscow, Y. Zhang, J. Taylor, and C. R. Bowen, Eur. Phys. J. Spec. Top. 224, 2949 (2015).

    Article  Google Scholar 

  12. D. P. Skinner, R. E. Newnham, and L. E. Cross, Mater. Res. Bull. 13, 599 (1978).

    Article  Google Scholar 

  13. K. Ayusawa, T. Arai, H. Sato, K. Kawamura, T. Miyata, and K. Kobayashi, Jpn. J. Appl. Phys. 28, 187 (1989).

    Article  Google Scholar 

  14. A. V. Atanova, O. M. Zhigalina, D. N. Khmelenin, G. A. Orlov, D. S. Seregin, A. S. Sigov, and K. A. Vorotilov, J. Am. Ceram. Soc. 105, 639 (2021).

    Article  Google Scholar 

  15. A. S. Vishnevskiy, S. Naumov, D. S. Seregin, Y. H. Wu, W. T. Chuang, M. Rasadujjaman, J. Zhang, J. Leu, K. A. Vorotilov, and M. R. Baklanov, Materials (Basel) 13, 4484 (2020).

    Article  ADS  Google Scholar 

  16. A. S. Vishnevskiy, D. S. Seregin, K. A. Vorotilov, A. S. Sigov, K. P. Mogilnikov, and M. R. Baklanov, J. Sol–Gel Sci. Technol. 92, 273 (2019).

    Article  Google Scholar 

  17. A. Safari and E. K. Akdogan, Ferroelectrics 331, 153 (2006).

    Article  ADS  Google Scholar 

  18. J. A. Taillon, C. Pellegrinelli, Y. L. Huang, E. D. Wachsman, and L. G. Salamanca-Riba, Ultramicroscopy 184, 24 (2018).

    Article  Google Scholar 

  19. D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, and C. Sanchez, Adv. Funct. Mater. 14, 309 (2004).

    Article  Google Scholar 

  20. G. J. A. A. Soler-Illia, P. C. Angelomé, M. C. Fuertes, D. Grosso, and C. Boissiere, Nanoscale 4, 2549 (2012).

    Article  ADS  Google Scholar 

  21. L. Mahoney and R. T. Koodali, Materials (Basel) 7, 2697 (2014).

    Article  ADS  Google Scholar 

  22. S. J. F. Herregods, K. Wyns, A. Buekenhoudt, and V. Meynen, Adv. Eng. Mater. 21, 1 (2019).

    Article  Google Scholar 

  23. P. van der Voort, D. Esquivel, E. de Canck, F. Goethals, I. van Driessche, and F. J. Romero-Salguero, Chem. Soc. Rev. 42, 3913 (2013).

    Article  Google Scholar 

  24. P. Thevenaz, U. E. Ruttimann, and M. Unser, IEEE Trans. Image Process. 7, 27 (1998).

    Article  ADS  Google Scholar 

  25. Q. Tseng, I. Wang, E. Duchemin-Pelletier, A. Azioune, N. Carpi, J. Gao, O. Filhol, M. Piel, M. Théry, and M. Balland, Lab Chip 11, 2231 (2011).

    Article  Google Scholar 

  26. J. Roels, F. Vernaillen, A. Kremer, A. Gonçalves, J. Aelterman, H. Q. Luong, B. Goossens, W. Philips, S. Lippens, and Y. Saeys, Nat. Commun. 11, 771 (2020).

    Article  ADS  Google Scholar 

  27. I. Arganda-Carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin, A. Cardona, and H. S. Seung, Bioinformatics 33, 2424 (2017).

    Article  Google Scholar 

  28. J. Ollion, J. Cochennec, F. Loll, C. Escudé, and T. Boudier, Bioinformatics 29, 1840 (2013).

    Article  Google Scholar 

  29. L. Holzer, F. Indutnyi, P. Gasser, B. Münch, and M. J. Wegmann, J. Microsc. 216, 84 (2004).

    Article  MathSciNet  Google Scholar 

  30. T. Hildebrand and P. Ruegsegger, J. Microsc. 185, 67 (1997).

    Article  Google Scholar 

  31. R. Dougherty and K.-H. Kunzelmann, Microsc. Microanal. 13, 1678 (2007).

    Article  Google Scholar 

  32. J. A. Taillon, Dissertation (Univ. Maryland, College Park, USA, 2016).

  33. H. Homann, Insight J. 421, 1 (2007). https://doi.org/10.54294/xjdr5f

    Article  Google Scholar 

  34. D. Gostovic, N. J. Vito, K. A. O’Hara, K. S. Jones, and E. D. Wachsman, J. Am. Ceram. Soc. 94, 620 (2011).

    Article  Google Scholar 

  35. I. Arganda-Carreras, R. Fernández-González, A. Muñoz-Barrutia, and C. Ortiz-De-Solorzano, Microsc. Res. Technol. 73, 1019 (2010).

    Article  Google Scholar 

  36. H. J. Johnson, M. McCormick, and L. Ibáñez, The ITK Software Guide, Vol. 1: Introduction and Development Guidelines, Vol. 2: Design and Functionality, 4th ed., Updated for ITK version 5.2.0 (Insight Software Consortium, 2021). https://itk.org/ItkSoftwareGuide.pdf.

  37. K. A. Vorotilov, O. M. Zhigalina, V. A. Vasiljev, and A. S. Sigov, Phys. Solid State 51, 1337 (2014).

    Article  ADS  Google Scholar 

  38. K. Vorotilov, A. Sigov, D. Seregin, Yu. Podgorny, O. Zhigalina, and D. Khmelenin, Phase Trans. 86, 1152 (2013).

    Article  Google Scholar 

  39. S. Agarwal and G. W. Ho, Mater. Lett. 63, 1624 (2009).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences) in the part of sample preparation and TEM studies and by the Russian Foundation for Basic Research (project no. 20-32-90056) in the part of FIB–SEM nanotomography studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Atanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanova, A.V., Khmelenin, D.N. & Zhigalina, O.M. Influence of Crystallization on the 3D Structure of Pores in Ferroelectric PZT Films. Jetp Lett. 116, 716–722 (2022). https://doi.org/10.1134/S0021364022602056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022602056

Navigation