Skip to main content
Log in

Runaway Electrons at the Formation of a Positive Ionization Wave in Nitrogen and Air

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The generation of runaway electrons (REs) at a subnanosecond breakdown of a “plane–needle” gap caused by the development of a positive ionization wave starting from a grounded needle electrode (anode) has been studied experimentally for the first time. Using a four-channel ICCD camera, a Hamamatsu streak camera, and an original method for measuring the displacement current generated by an appearing and propagating ionization wave, the generation of REs has been studied together with the dynamics ionization waves in air and nitrogen at pressures from 20 to 100 kPa. Current pulses of REs shorter than 100 ps have been observed in air at pressures of 60 kPa and below and in nitrogen in the entire pressure range. Double current pulses of REs have been observed in both gases at pressures below 50 kPa. It has been established that the generation of REs occurs after the arrival of the ionization wave at the planar cathode rather than at its start near the needle electrode, as could be expected. The energy of REs under these conditions is lower than the breakdown voltage by a factor of 4 or more. The data obtained indicate that REs are generated in the cathode layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (Futurepast, Arlington, 2003).

    Google Scholar 

  2. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (Nauka, Moscow, 1991; Akad. Nauk, Yekaterinburg, 1993).

  3. Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014).

    Google Scholar 

  4. Y. Li, Y. Fu, Z. Liu, H. Li, P. Wang, H. Luo, X. Zou, and X. Wang, Plasma Sources Sci. Technol. 31, 045027 (2022).

  5. G. A. Mesyats, E. A. Osipenko, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, and N. M. Zubarev, IEEE Electron Dev. Lett. 43, 627 (2022).

    Article  ADS  Google Scholar 

  6. E. I. Bochkov, L. P. Babich, and I. M. Kutsyk, Plasma Phys. Rep. 47, 1027 (2021).

    Article  ADS  Google Scholar 

  7. D. Levko, J. Appl. Phys. 126, 083303 (2019).

  8. V. V. Lisenkov, Y. I. Mamontov, and I. N. Tikhonov, J. Phys.: Conf. Ser. 2064, 012021 (2021).

  9. E. Oreshkin, Eur. Phys. Lett. 136, 15001 (2021).

    Article  ADS  Google Scholar 

  10. A. Kozyrev, V. Kozhevnikov, and N. Semeniuk, Plasma Sources Sci. Technol. 29, 125023 (2020).

  11. A. V. Kozyrev, E. M. Baranova, V. Yu. Kozhevnikov, and N. S. Semenyuk, Tech. Phys. Lett. 43, 804 (2017).

    Article  ADS  Google Scholar 

  12. V. Y. Kozhevnikov, A. V. Kozyrev, N. S. Semeniuk, and A. O. Kokovin, Russ. Phys. J. 61, 603 (2018).

    Article  Google Scholar 

  13. Y. Rybin, N. Kalinin, and M. Timshina, IEEE Trans. Plasma Sci. 49, 1262 (2021).

    Article  ADS  Google Scholar 

  14. A. Y. Starikovskiy, N. L. Aleksandrov, and M. N. Shneider, J. Appl. Phys. 129, 063301 (2021).

  15. K.-D. Weltmann, J. F. Kolb, M. Holub, D. Uhrlandt, M. Šimek, K. Ostrikov, S. Hamaguchi, U. Cvelbar, M. Černák, B. Locke, A. Fridman, P. Favia, and K. Becker, Plasma Process Polym. 16, 1800118 (2018).

  16. V. F. Tarasenko, D. V. Beloplotov, M. I. Lomaev, and D. A. Sorokin, J. Chem. Chem. Eng. 8, 1156 (2014).

    Google Scholar 

  17. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Plasma Phys. Rep. 43, 792 (2017).

    Article  ADS  Google Scholar 

  18. J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M. A. Uman, and V. A. Rakov, J. Geophys. Res. Atmos. 113, D23207 (2008).

  19. C. V. Nguyen, A. P. J. van Deursen, E. J. M. van Heesch, G. J. J. Winands, and A. J. M. Pemen, J. Phys. D: Appl. Phys. 43, 025202 (2010).

  20. A. V. Kozyrev, V. Y. Kozhevnikov, I. D. Kostyrya, D. V. Rybka, V. F. Tarasenko, and D. V. Schitz, Atmos. Ocean Opt. 25, 176 (2012).

    Article  Google Scholar 

  21. M. B. Zheleznyak, A. K. Mnatsakanyan, and S. V. Sizykh, High Temp. 20, 357 (1982).

    ADS  Google Scholar 

  22. A. A. Kulikovsky, J. Phys. D: Appl. Phys. 33, 1514 (2000).

    Article  ADS  Google Scholar 

  23. S. Pancheshnyi, Plasma Sources Sci. Technol. 24, 015023 (2015).

  24. N. Y. Babaeva, D. V. Tereshonok, and G. V. Naidis, Plasma Sources Sci. Technol. 25, 044008 (2016).

  25. J. Teunissen and U. Ebert, Plasma Sources Sci. Technol. 25, 044005 (2016).

  26. A. Bourdon, F. Péchereau, F. Tholin, and Z. Bonaventura, Plasma Sources Sci. Technol. 30, 105022 (2021).

  27. A. Brisset, K. Gazeli, L. Magne, S. Pasquiers, P. Jeanney, E. Marode, and P. Tardiveau, Plasma Sources Sci. Technol. 28, 055016 (2019).

  28. N. Y. Babaeva, G. V. Naidis, D. V. Tereshonok, and E. E. Son, J. Phys. D: Appl. Phys. 51, 434002 (2018).

  29. D. V. Beloplotov, M. I. Lomaev, V. F. Tarasenko, and D. A. Sorokin, JETP Lett. 107, 606 (2018).

    Article  ADS  Google Scholar 

  30. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Phys. Plasmas 25, 083511 (2018).

  31. D. V. Beloplotov, V. F. Tarasenko, V. A. Shklyaev, and D. A. Sorokin, JETP Lett. 113, 129 (2021).

    Article  ADS  Google Scholar 

  32. D. V. Beloplotov, V. F. Tarasenko, V. A. Shklyaev, and D. A. Sorokin, J. Phys. D: Appl. Phys. 54, 304001 (2021).

  33. V. M. Efanov, M. V. Efanov, A. V. Komashko, A. V. Kirilenko, P. M. Yarin, and S. V. Zazoulin, in Ultra-Wideband, Short Pulse Electromagnetics 9, Ed. by F. Sabath, D. V. Giri, F. Rachidi-Haeri, and A. Kaelin (Springer, New York, 2010), Part 5, p. 301.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00733) and by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. FWRM-2021-0014 for the Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Beloplotov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloplotov, D.V., Tarasenko, V.F. & Sorokin, D.A. Runaway Electrons at the Formation of a Positive Ionization Wave in Nitrogen and Air. Jetp Lett. 116, 293–299 (2022). https://doi.org/10.1134/S0021364022601580

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601580

Navigation