Skip to main content
Log in

On the Possible Magnetic Properties of Ultrathin Mn2GaC Films on Al2O3 Substrates

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The possibility of growth of thin Mn2GaC MAX phase films on Al2O3 substrates with various orientations and their magnetic properties have been studied. The most favorable orientation relationships and interface planes in the Mn2GaC//Al2O3 system, which indicate the possibility of growth on C-face (0001), S-face \((01\bar {1}\bar {1})\), N‑face \((11\bar {2}\bar {3})\), and R-face \((0\bar {1}1\bar {2})\) sapphire substrates, have been predicted within a geometric approach. Using the electron density functional method, the possible magnetic properties of continuous ultrathin Mn2GaC films have been calculated under the condition of conservation of uniform expansions/compressions of the MAX phase lattice, which are induced by growth on the predicted substrates. The effect of the deformation of the Mn2GaC lattice on magnetic ordering and magnetic moments has been determined, and the possibility of a transition from an antiferromagnetic to a ferromagnetic state under the action of external magnetic fields has been evaluated. It has been shown that the growth of the ferromagnetic film of the Mn2GaC MAX phase is the most probable on the Al2O3 (0001), Al2O3\((11\bar {2}\bar {3})\), and Al2O3\((0\bar {1}1\bar {2})\) substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. S. Ingason, A. Petruhins, and J. Rosen, Mater. Res. Lett. 4, 152 (2016).

    Article  Google Scholar 

  2. A. S. Ingason, A. Mockute, M. Dahlqvist, F. Magnus, S. Olafsson, U. B. Arnalds, B. Alling, I. A. Abrikosov, B. Hjörvarsson, P. O. Å. Persson, and J. Rosen, Phys. Rev. Lett. 110, 195502 (2013).

  3. R. Salikhov, A. S. Semisalova, A. Petruhins, A. S. Ingason, J. Rosen, U. Wiedwald, and M. Farle, Mater. Res. Lett. 3, 156 (2015).

    Article  Google Scholar 

  4. M. Stevens, H. Pazniak, A. Jemiola, M. Felek, M. Farle, and U. Wiedwald, Mater. Res. Lett. 9, 343 (2021).

    Article  Google Scholar 

  5. M. A. Visotin, I. A. Tarasov, A. S. Fedorov, S. N. Varnakov, and S. G. Ovchinnikov, Acta Crystallogr., B 76, 469 (2020).

    Article  Google Scholar 

  6. A. S. Botana, F. Bernardini, and A. Cano, JETP 132, 618 (2021).

    Article  ADS  Google Scholar 

  7. S. G. Ovchinnikov, O. A. Maximova, S. A. Lyashchenko, I. A. Yakovlev, and S. N. Varnakov, JETP Lett. 114, 163 (2021).

    Article  ADS  Google Scholar 

  8. M.-X. Zhang, P. M. Kelly, M. Qian, and J. A. Taylor, Acta Mater. 53, 3261 (2005).

    Article  ADS  Google Scholar 

  9. Q. Liang and W. T. Reynolds, Metall. Mater. Trans. A 29, 2059 (1998).

    Article  Google Scholar 

  10. A. Petruhins, A. S. Ingason, J. Lu, F. Magnus, S. Olafsson, and J. Rosen, J. Mater. Sci. 50, 4495 (2015).

    Article  ADS  Google Scholar 

  11. P. Eklund, M. Bugnet, V. Mauchamp, S. Dubois, C. Tromas, J. Jensen, L. Piraux, L. Gence, M. Jaouen, and T. Cabioc’h, Phys. Rev. B 84, 1 (2011).

    Article  Google Scholar 

  12. I. R. Shein and A. L. Ivanovskii, JETP Lett. 91, 410 (2010).

    Article  ADS  Google Scholar 

  13. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  14. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  16. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  18. M. Dahlqvist and J. Rosen, Sci. Rep. 10, 11384 (2020).

    Article  Google Scholar 

  19. N. I. Medvedeva, Phys. Solid State 55, 551 (2013).

    Article  ADS  Google Scholar 

  20. T. V. Perevalov, A. V. Shaposhnikov, V. A. Gritsenko, H. Wong, J. H. Han, and C. W. Kim, JETP Lett. 85, 165 (2007).

    Article  ADS  Google Scholar 

  21. A. V. Bakulin, S. Hocker, and S. E. Kul’kova, Fiz. Mezomekh. 24, 26 (2021).

    Google Scholar 

  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was supported jointly by the Russian Foundation for Basic Research, Krasnoyarsk Territory Government, and Krasnoyarsk Regional Science Foundation (project no. 20-42-240012) and by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1886, Project for Development of World-Class Laboratories).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vysotin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotin, M.A., Tarasov, I.A., Fedorov, A.S. et al. On the Possible Magnetic Properties of Ultrathin Mn2GaC Films on Al2O3 Substrates. Jetp Lett. 116, 323–328 (2022). https://doi.org/10.1134/S0021364022601488

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601488

Navigation